MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psseq1d Unicode version

Theorem psseq1d 3281
Description: An equality deduction for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.)
Hypothesis
Ref Expression
psseq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
psseq1d  |-  ( ph  ->  ( A  C.  C  <->  B 
C.  C ) )

Proof of Theorem psseq1d
StepHypRef Expression
1 psseq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 psseq1 3276 . 2  |-  ( A  =  B  ->  ( A  C.  C  <->  B  C.  C ) )
31, 2syl 15 1  |-  ( ph  ->  ( A  C.  C  <->  B 
C.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1632    C. wpss 3166
This theorem is referenced by:  psseq12d  3283  fin23lem32  7986  fin23lem35  7989  compssiso  8016  mrieqv2d  13557  mrissmrcd  13558  pgpfac1lem5  15330  islbs3  15924  chpsscon2  22100
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-ne 2461  df-in 3172  df-ss 3179  df-pss 3181
  Copyright terms: Public domain W3C validator