MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssinf Unicode version

Theorem pssinf 7161
Description: A set equinumerous to a proper subset of itself is infinite. Corollary 6D(a) of [Enderton] p. 136. (Contributed by NM, 2-Jun-1998.)
Assertion
Ref Expression
pssinf  |-  ( ( A  C.  B  /\  A  ~~  B )  ->  -.  B  e.  Fin )

Proof of Theorem pssinf
StepHypRef Expression
1 php3 7135 . . . . 5  |-  ( ( B  e.  Fin  /\  A  C.  B )  ->  A  ~<  B )
21ex 423 . . . 4  |-  ( B  e.  Fin  ->  ( A  C.  B  ->  A  ~<  B ) )
3 sdomnen 6978 . . . 4  |-  ( A 
~<  B  ->  -.  A  ~~  B )
42, 3syl6com 31 . . 3  |-  ( A 
C.  B  ->  ( B  e.  Fin  ->  -.  A  ~~  B ) )
54con2d 107 . 2  |-  ( A 
C.  B  ->  ( A  ~~  B  ->  -.  B  e.  Fin )
)
65imp 418 1  |-  ( ( A  C.  B  /\  A  ~~  B )  ->  -.  B  e.  Fin )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    e. wcel 1710    C. wpss 3229   class class class wbr 4104    ~~ cen 6948    ~< csdm 6950   Fincfn 6951
This theorem is referenced by:  fisseneq  7162  ominf  7163  isprm2lem  12862
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-sbc 3068  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-br 4105  df-opab 4159  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-er 6747  df-en 6952  df-dom 6953  df-sdom 6954  df-fin 6955
  Copyright terms: Public domain W3C validator