MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psss Structured version   Unicode version

Theorem psss 14646
Description: Any subset of a partially ordered set is partially ordered. (Contributed by FL, 24-Jan-2010.)
Assertion
Ref Expression
psss  |-  ( R  e.  PosetRel  ->  ( R  i^i  ( A  X.  A
) )  e.  PosetRel )

Proof of Theorem psss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 3561 . . 3  |-  ( R  i^i  ( A  X.  A ) )  C_  R
2 psrel 14635 . . 3  |-  ( R  e.  PosetRel  ->  Rel  R )
3 relss 4963 . . 3  |-  ( ( R  i^i  ( A  X.  A ) ) 
C_  R  ->  ( Rel  R  ->  Rel  ( R  i^i  ( A  X.  A ) ) ) )
41, 2, 3mpsyl 61 . 2  |-  ( R  e.  PosetRel  ->  Rel  ( R  i^i  ( A  X.  A
) ) )
5 pstr2 14637 . . 3  |-  ( R  e.  PosetRel  ->  ( R  o.  R )  C_  R
)
6 trinxp 5259 . . 3  |-  ( ( R  o.  R ) 
C_  R  ->  (
( R  i^i  ( A  X.  A ) )  o.  ( R  i^i  ( A  X.  A
) ) )  C_  ( R  i^i  ( A  X.  A ) ) )
75, 6syl 16 . 2  |-  ( R  e.  PosetRel  ->  ( ( R  i^i  ( A  X.  A ) )  o.  ( R  i^i  ( A  X.  A ) ) )  C_  ( R  i^i  ( A  X.  A
) ) )
8 uniin 4035 . . . . . 6  |-  U. ( R  i^i  ( A  X.  A ) )  C_  ( U. R  i^i  U. ( A  X.  A
) )
98unissi 4038 . . . . 5  |-  U. U. ( R  i^i  ( A  X.  A ) ) 
C_  U. ( U. R  i^i  U. ( A  X.  A ) )
10 uniin 4035 . . . . 5  |-  U. ( U. R  i^i  U. ( A  X.  A ) ) 
C_  ( U. U. R  i^i  U. U. ( A  X.  A ) )
119, 10sstri 3357 . . . 4  |-  U. U. ( R  i^i  ( A  X.  A ) ) 
C_  ( U. U. R  i^i  U. U. ( A  X.  A ) )
12 elin 3530 . . . . . 6  |-  ( x  e.  ( U. U. R  i^i  U. U. ( A  X.  A ) )  <-> 
( x  e.  U. U. R  /\  x  e. 
U. U. ( A  X.  A ) ) )
13 unixpid 5404 . . . . . . . . 9  |-  U. U. ( A  X.  A
)  =  A
1413eleq2i 2500 . . . . . . . 8  |-  ( x  e.  U. U. ( A  X.  A )  <->  x  e.  A )
15 simprr 734 . . . . . . . . . 10  |-  ( ( R  e.  PosetRel  /\  (
x  e.  U. U. R  /\  x  e.  A
) )  ->  x  e.  A )
16 psdmrn 14639 . . . . . . . . . . . . . . 15  |-  ( R  e.  PosetRel  ->  ( dom  R  =  U. U. R  /\  ran  R  =  U. U. R ) )
1716simpld 446 . . . . . . . . . . . . . 14  |-  ( R  e.  PosetRel  ->  dom  R  =  U. U. R )
1817eleq2d 2503 . . . . . . . . . . . . 13  |-  ( R  e.  PosetRel  ->  ( x  e. 
dom  R  <->  x  e.  U. U. R ) )
1918biimpar 472 . . . . . . . . . . . 12  |-  ( ( R  e.  PosetRel  /\  x  e.  U. U. R )  ->  x  e.  dom  R )
20 eqid 2436 . . . . . . . . . . . . 13  |-  dom  R  =  dom  R
2120psref 14640 . . . . . . . . . . . 12  |-  ( ( R  e.  PosetRel  /\  x  e.  dom  R )  ->  x R x )
2219, 21syldan 457 . . . . . . . . . . 11  |-  ( ( R  e.  PosetRel  /\  x  e.  U. U. R )  ->  x R x )
2322adantrr 698 . . . . . . . . . 10  |-  ( ( R  e.  PosetRel  /\  (
x  e.  U. U. R  /\  x  e.  A
) )  ->  x R x )
24 brinxp2 4939 . . . . . . . . . 10  |-  ( x ( R  i^i  ( A  X.  A ) ) x  <->  ( x  e.  A  /\  x  e.  A  /\  x R x ) )
2515, 15, 23, 24syl3anbrc 1138 . . . . . . . . 9  |-  ( ( R  e.  PosetRel  /\  (
x  e.  U. U. R  /\  x  e.  A
) )  ->  x
( R  i^i  ( A  X.  A ) ) x )
2625expr 599 . . . . . . . 8  |-  ( ( R  e.  PosetRel  /\  x  e.  U. U. R )  ->  ( x  e.  A  ->  x ( R  i^i  ( A  X.  A ) ) x ) )
2714, 26syl5bi 209 . . . . . . 7  |-  ( ( R  e.  PosetRel  /\  x  e.  U. U. R )  ->  ( x  e. 
U. U. ( A  X.  A )  ->  x
( R  i^i  ( A  X.  A ) ) x ) )
2827expimpd 587 . . . . . 6  |-  ( R  e.  PosetRel  ->  ( ( x  e.  U. U. R  /\  x  e.  U. U. ( A  X.  A
) )  ->  x
( R  i^i  ( A  X.  A ) ) x ) )
2912, 28syl5bi 209 . . . . 5  |-  ( R  e.  PosetRel  ->  ( x  e.  ( U. U. R  i^i  U. U. ( A  X.  A ) )  ->  x ( R  i^i  ( A  X.  A ) ) x ) )
3029ralrimiv 2788 . . . 4  |-  ( R  e.  PosetRel  ->  A. x  e.  ( U. U. R  i^i  U.
U. ( A  X.  A ) ) x ( R  i^i  ( A  X.  A ) ) x )
31 ssralv 3407 . . . 4  |-  ( U. U. ( R  i^i  ( A  X.  A ) ) 
C_  ( U. U. R  i^i  U. U. ( A  X.  A ) )  ->  ( A. x  e.  ( U. U. R  i^i  U. U. ( A  X.  A ) ) x ( R  i^i  ( A  X.  A
) ) x  ->  A. x  e.  U. U. ( R  i^i  ( A  X.  A ) ) x ( R  i^i  ( A  X.  A
) ) x ) )
3211, 30, 31mpsyl 61 . . 3  |-  ( R  e.  PosetRel  ->  A. x  e.  U. U. ( R  i^i  ( A  X.  A ) ) x ( R  i^i  ( A  X.  A
) ) x )
331ssbri 4254 . . . . 5  |-  ( x ( R  i^i  ( A  X.  A ) ) y  ->  x R
y )
341ssbri 4254 . . . . 5  |-  ( y ( R  i^i  ( A  X.  A ) ) x  ->  y R x )
35 psasym 14642 . . . . . 6  |-  ( ( R  e.  PosetRel  /\  x R y  /\  y R x )  ->  x  =  y )
36353expib 1156 . . . . 5  |-  ( R  e.  PosetRel  ->  ( ( x R y  /\  y R x )  ->  x  =  y )
)
3733, 34, 36syl2ani 638 . . . 4  |-  ( R  e.  PosetRel  ->  ( ( x ( R  i^i  ( A  X.  A ) ) y  /\  y ( R  i^i  ( A  X.  A ) ) x )  ->  x  =  y ) )
3837alrimivv 1642 . . 3  |-  ( R  e.  PosetRel  ->  A. x A. y
( ( x ( R  i^i  ( A  X.  A ) ) y  /\  y ( R  i^i  ( A  X.  A ) ) x )  ->  x  =  y ) )
39 asymref2 5251 . . 3  |-  ( ( ( R  i^i  ( A  X.  A ) )  i^i  `' ( R  i^i  ( A  X.  A ) ) )  =  (  _I  |`  U. U. ( R  i^i  ( A  X.  A ) ) )  <->  ( A. x  e.  U. U. ( R  i^i  ( A  X.  A ) ) x ( R  i^i  ( A  X.  A ) ) x  /\  A. x A. y ( ( x ( R  i^i  ( A  X.  A ) ) y  /\  y ( R  i^i  ( A  X.  A ) ) x )  ->  x  =  y ) ) )
4032, 38, 39sylanbrc 646 . 2  |-  ( R  e.  PosetRel  ->  ( ( R  i^i  ( A  X.  A ) )  i^i  `' ( R  i^i  ( A  X.  A
) ) )  =  (  _I  |`  U. U. ( R  i^i  ( A  X.  A ) ) ) )
41 inex1g 4346 . . 3  |-  ( R  e.  PosetRel  ->  ( R  i^i  ( A  X.  A
) )  e.  _V )
42 isps 14634 . . 3  |-  ( ( R  i^i  ( A  X.  A ) )  e.  _V  ->  (
( R  i^i  ( A  X.  A ) )  e.  PosetRel 
<->  ( Rel  ( R  i^i  ( A  X.  A ) )  /\  ( ( R  i^i  ( A  X.  A
) )  o.  ( R  i^i  ( A  X.  A ) ) ) 
C_  ( R  i^i  ( A  X.  A
) )  /\  (
( R  i^i  ( A  X.  A ) )  i^i  `' ( R  i^i  ( A  X.  A ) ) )  =  (  _I  |`  U. U. ( R  i^i  ( A  X.  A ) ) ) ) ) )
4341, 42syl 16 . 2  |-  ( R  e.  PosetRel  ->  ( ( R  i^i  ( A  X.  A ) )  e.  PosetRel  <->  ( Rel  ( R  i^i  ( A  X.  A
) )  /\  (
( R  i^i  ( A  X.  A ) )  o.  ( R  i^i  ( A  X.  A
) ) )  C_  ( R  i^i  ( A  X.  A ) )  /\  ( ( R  i^i  ( A  X.  A ) )  i^i  `' ( R  i^i  ( A  X.  A
) ) )  =  (  _I  |`  U. U. ( R  i^i  ( A  X.  A ) ) ) ) ) )
444, 7, 40, 43mpbir3and 1137 1  |-  ( R  e.  PosetRel  ->  ( R  i^i  ( A  X.  A
) )  e.  PosetRel )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   A.wal 1549    = wceq 1652    e. wcel 1725   A.wral 2705   _Vcvv 2956    i^i cin 3319    C_ wss 3320   U.cuni 4015   class class class wbr 4212    _I cid 4493    X. cxp 4876   `'ccnv 4877   dom cdm 4878   ran crn 4879    |` cres 4880    o. ccom 4882   Rel wrel 4883   PosetRelcps 14624
This theorem is referenced by:  tsrss  14655  ordtrest2  17268
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ps 14629
  Copyright terms: Public domain W3C validator