Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  psssstr Unicode version

Theorem psssstr 3358
 Description: Transitive law for subclass and proper subclass. (Contributed by NM, 3-Apr-1996.)
Assertion
Ref Expression
psssstr

Proof of Theorem psssstr
StepHypRef Expression
1 sspss 3351 . 2
2 psstr 3356 . . . . 5
32ex 423 . . . 4
4 psseq2 3340 . . . . 5
54biimpcd 215 . . . 4
63, 5jaod 369 . . 3
76imp 418 . 2
81, 7sylan2b 461 1
 Colors of variables: wff set class Syntax hints:   wi 4   wo 357   wa 358   wceq 1642   wss 3228   wpss 3229 This theorem is referenced by:  psssstrd  3361  ackbij1lem15  7950  suplem1pr  8766  atexch  23075  lsatssn0  29261  lsatexch  29302  lkrpssN  29422 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2345  df-cleq 2351  df-clel 2354  df-ne 2523  df-in 3235  df-ss 3242  df-pss 3244
 Copyright terms: Public domain W3C validator