Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubclsetN Unicode version

Theorem psubclsetN 30125
Description: The set of closed projective subspaces in a Hilbert lattice. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
psubclset.a  |-  A  =  ( Atoms `  K )
psubclset.p  |-  ._|_  =  ( _|_ P `  K
)
psubclset.c  |-  C  =  ( PSubCl `  K )
Assertion
Ref Expression
psubclsetN  |-  ( K  e.  B  ->  C  =  { s  |  ( s  C_  A  /\  (  ._|_  `  (  ._|_  `  s ) )  =  s ) } )
Distinct variable groups:    A, s    K, s
Allowed substitution hints:    B( s)    C( s)   
._|_ ( s)

Proof of Theorem psubclsetN
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 2796 . 2  |-  ( K  e.  B  ->  K  e.  _V )
2 psubclset.c . . 3  |-  C  =  ( PSubCl `  K )
3 fveq2 5525 . . . . . . . 8  |-  ( k  =  K  ->  ( Atoms `  k )  =  ( Atoms `  K )
)
4 psubclset.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
53, 4syl6eqr 2333 . . . . . . 7  |-  ( k  =  K  ->  ( Atoms `  k )  =  A )
65sseq2d 3206 . . . . . 6  |-  ( k  =  K  ->  (
s  C_  ( Atoms `  k )  <->  s  C_  A ) )
7 fveq2 5525 . . . . . . . . 9  |-  ( k  =  K  ->  ( _|_ P `  k )  =  ( _|_ P `  K ) )
8 psubclset.p . . . . . . . . 9  |-  ._|_  =  ( _|_ P `  K
)
97, 8syl6eqr 2333 . . . . . . . 8  |-  ( k  =  K  ->  ( _|_ P `  k )  =  ._|_  )
109fveq1d 5527 . . . . . . . 8  |-  ( k  =  K  ->  (
( _|_ P `  k ) `  s
)  =  (  ._|_  `  s ) )
119, 10fveq12d 5531 . . . . . . 7  |-  ( k  =  K  ->  (
( _|_ P `  k ) `  (
( _|_ P `  k ) `  s
) )  =  ( 
._|_  `  (  ._|_  `  s
) ) )
1211eqeq1d 2291 . . . . . 6  |-  ( k  =  K  ->  (
( ( _|_ P `  k ) `  (
( _|_ P `  k ) `  s
) )  =  s  <-> 
(  ._|_  `  (  ._|_  `  s ) )  =  s ) )
136, 12anbi12d 691 . . . . 5  |-  ( k  =  K  ->  (
( s  C_  ( Atoms `  k )  /\  ( ( _|_ P `  k ) `  (
( _|_ P `  k ) `  s
) )  =  s )  <->  ( s  C_  A  /\  (  ._|_  `  (  ._|_  `  s ) )  =  s ) ) )
1413abbidv 2397 . . . 4  |-  ( k  =  K  ->  { s  |  ( s  C_  ( Atoms `  k )  /\  ( ( _|_ P `  k ) `  (
( _|_ P `  k ) `  s
) )  =  s ) }  =  {
s  |  ( s 
C_  A  /\  (  ._|_  `  (  ._|_  `  s
) )  =  s ) } )
15 df-psubclN 30124 . . . 4  |-  PSubCl  =  ( k  e.  _V  |->  { s  |  ( s 
C_  ( Atoms `  k
)  /\  ( ( _|_ P `  k ) `
 ( ( _|_
P `  k ) `  s ) )  =  s ) } )
16 fvex 5539 . . . . . . 7  |-  ( Atoms `  K )  e.  _V
174, 16eqeltri 2353 . . . . . 6  |-  A  e. 
_V
1817pwex 4193 . . . . 5  |-  ~P A  e.  _V
19 df-pw 3627 . . . . . . . . 9  |-  ~P A  =  { s  |  s 
C_  A }
2019abeq2i 2390 . . . . . . . 8  |-  ( s  e.  ~P A  <->  s  C_  A )
2120anbi1i 676 . . . . . . 7  |-  ( ( s  e.  ~P A  /\  (  ._|_  `  (  ._|_  `  s ) )  =  s )  <->  ( s  C_  A  /\  (  ._|_  `  (  ._|_  `  s ) )  =  s ) )
2221abbii 2395 . . . . . 6  |-  { s  |  ( s  e. 
~P A  /\  (  ._|_  `  (  ._|_  `  s
) )  =  s ) }  =  {
s  |  ( s 
C_  A  /\  (  ._|_  `  (  ._|_  `  s
) )  =  s ) }
23 ssab2 3257 . . . . . 6  |-  { s  |  ( s  e. 
~P A  /\  (  ._|_  `  (  ._|_  `  s
) )  =  s ) }  C_  ~P A
2422, 23eqsstr3i 3209 . . . . 5  |-  { s  |  ( s  C_  A  /\  (  ._|_  `  (  ._|_  `  s ) )  =  s ) } 
C_  ~P A
2518, 24ssexi 4159 . . . 4  |-  { s  |  ( s  C_  A  /\  (  ._|_  `  (  ._|_  `  s ) )  =  s ) }  e.  _V
2614, 15, 25fvmpt 5602 . . 3  |-  ( K  e.  _V  ->  ( PSubCl `
 K )  =  { s  |  ( s  C_  A  /\  (  ._|_  `  (  ._|_  `  s ) )  =  s ) } )
272, 26syl5eq 2327 . 2  |-  ( K  e.  _V  ->  C  =  { s  |  ( s  C_  A  /\  (  ._|_  `  (  ._|_  `  s ) )  =  s ) } )
281, 27syl 15 1  |-  ( K  e.  B  ->  C  =  { s  |  ( s  C_  A  /\  (  ._|_  `  (  ._|_  `  s ) )  =  s ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   {cab 2269   _Vcvv 2788    C_ wss 3152   ~Pcpw 3625   ` cfv 5255   Atomscatm 29453   _|_ PcpolN 30091   PSubClcpscN 30123
This theorem is referenced by:  ispsubclN  30126
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-psubclN 30124
  Copyright terms: Public domain W3C validator