Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubclssatN Structured version   Unicode version

Theorem psubclssatN 30812
 Description: A closed projective subspace is a set of atoms. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
psubclssat.a
psubclssat.c
Assertion
Ref Expression
psubclssatN

Proof of Theorem psubclssatN
StepHypRef Expression
1 psubclssat.a . . 3
2 eqid 2438 . . 3
3 psubclssat.c . . 3
41, 2, 3psubcliN 30809 . 2
54simpld 447 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 360   wceq 1653   wcel 1726   wss 3322  cfv 5457  catm 30135  cpolN 30773  cpscN 30805 This theorem is referenced by:  pmapidclN  30813  psubclinN  30819  paddatclN  30820  pclfinclN  30821  poml6N  30826  osumcllem3N  30829  osumcllem9N  30835  osumcllem11N  30837  osumclN  30838 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-iota 5421  df-fun 5459  df-fv 5465  df-psubclN 30806
 Copyright terms: Public domain W3C validator