Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubspi Unicode version

Theorem psubspi 29936
Description: Property of a projective subspace. (Contributed by NM, 13-Jan-2012.)
Hypotheses
Ref Expression
psubspset.l  |-  .<_  =  ( le `  K )
psubspset.j  |-  .\/  =  ( join `  K )
psubspset.a  |-  A  =  ( Atoms `  K )
psubspset.s  |-  S  =  ( PSubSp `  K )
Assertion
Ref Expression
psubspi  |-  ( ( ( K  e.  D  /\  X  e.  S  /\  P  e.  A
)  /\  E. q  e.  X  E. r  e.  X  P  .<_  ( q  .\/  r ) )  ->  P  e.  X )
Distinct variable groups:    A, r,
q    K, q, r    X, q, r    A, q    P, q, r
Allowed substitution hints:    D( r, q)    S( r, q)    .\/ ( r, q)    .<_ ( r, q)

Proof of Theorem psubspi
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 psubspset.l . . . . . 6  |-  .<_  =  ( le `  K )
2 psubspset.j . . . . . 6  |-  .\/  =  ( join `  K )
3 psubspset.a . . . . . 6  |-  A  =  ( Atoms `  K )
4 psubspset.s . . . . . 6  |-  S  =  ( PSubSp `  K )
51, 2, 3, 4ispsubsp2 29935 . . . . 5  |-  ( K  e.  D  ->  ( X  e.  S  <->  ( X  C_  A  /\  A. p  e.  A  ( E. q  e.  X  E. r  e.  X  p  .<_  ( q  .\/  r
)  ->  p  e.  X ) ) ) )
65simplbda 607 . . . 4  |-  ( ( K  e.  D  /\  X  e.  S )  ->  A. p  e.  A  ( E. q  e.  X  E. r  e.  X  p  .<_  ( q  .\/  r )  ->  p  e.  X ) )
76ex 423 . . 3  |-  ( K  e.  D  ->  ( X  e.  S  ->  A. p  e.  A  ( E. q  e.  X  E. r  e.  X  p  .<_  ( q  .\/  r )  ->  p  e.  X ) ) )
8 breq1 4026 . . . . . 6  |-  ( p  =  P  ->  (
p  .<_  ( q  .\/  r )  <->  P  .<_  ( q  .\/  r ) ) )
982rexbidv 2586 . . . . 5  |-  ( p  =  P  ->  ( E. q  e.  X  E. r  e.  X  p  .<_  ( q  .\/  r )  <->  E. q  e.  X  E. r  e.  X  P  .<_  ( q  .\/  r ) ) )
10 eleq1 2343 . . . . 5  |-  ( p  =  P  ->  (
p  e.  X  <->  P  e.  X ) )
119, 10imbi12d 311 . . . 4  |-  ( p  =  P  ->  (
( E. q  e.  X  E. r  e.  X  p  .<_  ( q 
.\/  r )  ->  p  e.  X )  <->  ( E. q  e.  X  E. r  e.  X  P  .<_  ( q  .\/  r )  ->  P  e.  X ) ) )
1211rspccv 2881 . . 3  |-  ( A. p  e.  A  ( E. q  e.  X  E. r  e.  X  p  .<_  ( q  .\/  r )  ->  p  e.  X )  ->  ( P  e.  A  ->  ( E. q  e.  X  E. r  e.  X  P  .<_  ( q  .\/  r )  ->  P  e.  X ) ) )
137, 12syl6 29 . 2  |-  ( K  e.  D  ->  ( X  e.  S  ->  ( P  e.  A  -> 
( E. q  e.  X  E. r  e.  X  P  .<_  ( q 
.\/  r )  ->  P  e.  X )
) ) )
14133imp1 1164 1  |-  ( ( ( K  e.  D  /\  X  e.  S  /\  P  e.  A
)  /\  E. q  e.  X  E. r  e.  X  P  .<_  ( q  .\/  r ) )  ->  P  e.  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544    C_ wss 3152   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   lecple 13215   joincjn 14078   Atomscatm 29453   PSubSpcpsubsp 29685
This theorem is referenced by:  psubspi2N  29937  paddidm  30030
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-psubsp 29692
  Copyright terms: Public domain W3C validator