MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmp Unicode version

Theorem ptcmp 17752
Description: Tychonoff's theorem: The product of compact spaces is compact. The proof uses the Axiom of Choice. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
ptcmp  |-  ( ( A  e.  V  /\  F : A --> Comp )  ->  ( Xt_ `  F
)  e.  Comp )

Proof of Theorem ptcmp
StepHypRef Expression
1 fvex 5539 . . . . 5  |-  ( Xt_ `  F )  e.  _V
21uniex 4516 . . . 4  |-  U. ( Xt_ `  F )  e. 
_V
3 axac3 8090 . . . . 5  |- CHOICE
4 acufl 17612 . . . . 5  |-  (CHOICE  -> UFL  =  _V )
53, 4ax-mp 8 . . . 4  |- UFL  =  _V
62, 5eleqtrri 2356 . . 3  |-  U. ( Xt_ `  F )  e. UFL
7 cardeqv 8096 . . . 4  |-  dom  card  =  _V
82, 7eleqtrri 2356 . . 3  |-  U. ( Xt_ `  F )  e. 
dom  card
9 elin 3358 . . 3  |-  ( U. ( Xt_ `  F )  e.  (UFL  i^i  dom  card )  <->  ( U. ( Xt_ `  F )  e. UFL  /\  U. ( Xt_ `  F
)  e.  dom  card ) )
106, 8, 9mpbir2an 886 . 2  |-  U. ( Xt_ `  F )  e.  (UFL  i^i  dom  card )
11 eqid 2283 . . 3  |-  ( Xt_ `  F )  =  (
Xt_ `  F )
12 eqid 2283 . . 3  |-  U. ( Xt_ `  F )  = 
U. ( Xt_ `  F
)
1311, 12ptcmpg 17751 . 2  |-  ( ( A  e.  V  /\  F : A --> Comp  /\  U. ( Xt_ `  F )  e.  (UFL  i^i  dom  card ) )  ->  ( Xt_ `  F )  e. 
Comp )
1410, 13mp3an3 1266 1  |-  ( ( A  e.  V  /\  F : A --> Comp )  ->  ( Xt_ `  F
)  e.  Comp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   _Vcvv 2788    i^i cin 3151   U.cuni 3827   dom cdm 4689   -->wf 5251   ` cfv 5255   cardccrd 7568  CHOICEwac 7742   Xt_cpt 13343   Compccmp 17113  UFLcufl 17595
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-ac2 8089
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-rpss 6277  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-er 6660  df-map 6774  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-wdom 7273  df-card 7572  df-acn 7575  df-ac 7743  df-cda 7794  df-topgen 13344  df-pt 13345  df-top 16636  df-bases 16638  df-topon 16639  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-cmp 17114  df-fbas 17520  df-fg 17521  df-fil 17541  df-ufil 17596  df-ufl 17597  df-flim 17634  df-fcls 17636
  Copyright terms: Public domain W3C validator