MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmpfi Unicode version

Theorem ptcmpfi 17768
Description: A topological product of finitely many compact spaces is compact. This weak version of Tychonoff's theorem does not require the axiom of choice. (Contributed by Mario Carneiro, 8-Feb-2015.)
Assertion
Ref Expression
ptcmpfi  |-  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  F
)  e.  Comp )

Proof of Theorem ptcmpfi
Dummy variables  v  u  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffn 5533 . . . . 5  |-  ( F : A --> Comp  ->  F  Fn  A )
2 fnresdm 5496 . . . . 5  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
31, 2syl 16 . . . 4  |-  ( F : A --> Comp  ->  ( F  |`  A )  =  F )
43adantl 453 . . 3  |-  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( F  |`  A )  =  F )
54fveq2d 5674 . 2  |-  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  A ) )  =  ( Xt_ `  F
) )
6 ssid 3312 . . . 4  |-  A  C_  A
7 sseq1 3314 . . . . . 6  |-  ( x  =  (/)  ->  ( x 
C_  A  <->  (/)  C_  A
) )
8 reseq2 5083 . . . . . . . . . 10  |-  ( x  =  (/)  ->  ( F  |`  x )  =  ( F  |`  (/) ) )
9 res0 5092 . . . . . . . . . 10  |-  ( F  |`  (/) )  =  (/)
108, 9syl6eq 2437 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( F  |`  x )  =  (/) )
1110fveq2d 5674 . . . . . . . 8  |-  ( x  =  (/)  ->  ( Xt_ `  ( F  |`  x
) )  =  (
Xt_ `  (/) ) )
1211eleq1d 2455 . . . . . . 7  |-  ( x  =  (/)  ->  ( (
Xt_ `  ( F  |`  x ) )  e. 
Comp 
<->  ( Xt_ `  (/) )  e. 
Comp ) )
1312imbi2d 308 . . . . . 6  |-  ( x  =  (/)  ->  ( ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  x ) )  e.  Comp )  <->  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  (/) )  e.  Comp ) ) )
147, 13imbi12d 312 . . . . 5  |-  ( x  =  (/)  ->  ( ( x  C_  A  ->  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  x ) )  e.  Comp ) )  <->  ( (/)  C_  A  ->  ( ( A  e. 
Fin  /\  F : A
--> Comp )  ->  ( Xt_ `  (/) )  e.  Comp ) ) ) )
15 sseq1 3314 . . . . . 6  |-  ( x  =  y  ->  (
x  C_  A  <->  y  C_  A ) )
16 reseq2 5083 . . . . . . . . 9  |-  ( x  =  y  ->  ( F  |`  x )  =  ( F  |`  y
) )
1716fveq2d 5674 . . . . . . . 8  |-  ( x  =  y  ->  ( Xt_ `  ( F  |`  x ) )  =  ( Xt_ `  ( F  |`  y ) ) )
1817eleq1d 2455 . . . . . . 7  |-  ( x  =  y  ->  (
( Xt_ `  ( F  |`  x ) )  e. 
Comp 
<->  ( Xt_ `  ( F  |`  y ) )  e.  Comp ) )
1918imbi2d 308 . . . . . 6  |-  ( x  =  y  ->  (
( ( A  e. 
Fin  /\  F : A
--> Comp )  ->  ( Xt_ `  ( F  |`  x ) )  e. 
Comp )  <->  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  y ) )  e. 
Comp ) ) )
2015, 19imbi12d 312 . . . . 5  |-  ( x  =  y  ->  (
( x  C_  A  ->  ( ( A  e. 
Fin  /\  F : A
--> Comp )  ->  ( Xt_ `  ( F  |`  x ) )  e. 
Comp ) )  <->  ( y  C_  A  ->  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  y ) )  e. 
Comp ) ) ) )
21 sseq1 3314 . . . . . 6  |-  ( x  =  ( y  u. 
{ z } )  ->  ( x  C_  A 
<->  ( y  u.  {
z } )  C_  A ) )
22 reseq2 5083 . . . . . . . . 9  |-  ( x  =  ( y  u. 
{ z } )  ->  ( F  |`  x )  =  ( F  |`  ( y  u.  { z } ) ) )
2322fveq2d 5674 . . . . . . . 8  |-  ( x  =  ( y  u. 
{ z } )  ->  ( Xt_ `  ( F  |`  x ) )  =  ( Xt_ `  ( F  |`  ( y  u. 
{ z } ) ) ) )
2423eleq1d 2455 . . . . . . 7  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( Xt_ `  ( F  |`  x
) )  e.  Comp  <->  ( Xt_ `  ( F  |`  ( y  u.  {
z } ) ) )  e.  Comp )
)
2524imbi2d 308 . . . . . 6  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  x ) )  e.  Comp )  <->  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  ( y  u.  {
z } ) ) )  e.  Comp )
) )
2621, 25imbi12d 312 . . . . 5  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( x 
C_  A  ->  (
( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  x ) )  e.  Comp ) )  <->  ( (
y  u.  { z } )  C_  A  ->  ( ( A  e. 
Fin  /\  F : A
--> Comp )  ->  ( Xt_ `  ( F  |`  ( y  u.  {
z } ) ) )  e.  Comp )
) ) )
27 sseq1 3314 . . . . . 6  |-  ( x  =  A  ->  (
x  C_  A  <->  A  C_  A
) )
28 reseq2 5083 . . . . . . . . 9  |-  ( x  =  A  ->  ( F  |`  x )  =  ( F  |`  A ) )
2928fveq2d 5674 . . . . . . . 8  |-  ( x  =  A  ->  ( Xt_ `  ( F  |`  x ) )  =  ( Xt_ `  ( F  |`  A ) ) )
3029eleq1d 2455 . . . . . . 7  |-  ( x  =  A  ->  (
( Xt_ `  ( F  |`  x ) )  e. 
Comp 
<->  ( Xt_ `  ( F  |`  A ) )  e.  Comp ) )
3130imbi2d 308 . . . . . 6  |-  ( x  =  A  ->  (
( ( A  e. 
Fin  /\  F : A
--> Comp )  ->  ( Xt_ `  ( F  |`  x ) )  e. 
Comp )  <->  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  A ) )  e. 
Comp ) ) )
3227, 31imbi12d 312 . . . . 5  |-  ( x  =  A  ->  (
( x  C_  A  ->  ( ( A  e. 
Fin  /\  F : A
--> Comp )  ->  ( Xt_ `  ( F  |`  x ) )  e. 
Comp ) )  <->  ( A  C_  A  ->  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  A ) )  e. 
Comp ) ) ) )
33 0ex 4282 . . . . . . . . 9  |-  (/)  e.  _V
34 f0 5569 . . . . . . . . 9  |-  (/) : (/) --> Top
35 pttop 17537 . . . . . . . . 9  |-  ( (
(/)  e.  _V  /\  (/) : (/) --> Top )  ->  ( Xt_ `  (/) )  e.  Top )
3633, 34, 35mp2an 654 . . . . . . . 8  |-  ( Xt_ `  (/) )  e.  Top
37 eqid 2389 . . . . . . . . . . . . 13  |-  ( Xt_ `  (/) )  =  ( Xt_ `  (/) )
3837ptuni 17549 . . . . . . . . . . . 12  |-  ( (
(/)  e.  _V  /\  (/) : (/) --> Top )  ->  X_ x  e.  (/)  U. ( (/) `  x
)  =  U. ( Xt_ `  (/) ) )
3933, 34, 38mp2an 654 . . . . . . . . . . 11  |-  X_ x  e.  (/)  U. ( (/) `  x )  =  U. ( Xt_ `  (/) )
40 ixp0x 7028 . . . . . . . . . . . 12  |-  X_ x  e.  (/)  U. ( (/) `  x )  =  { (/)
}
41 snfi 7125 . . . . . . . . . . . 12  |-  { (/) }  e.  Fin
4240, 41eqeltri 2459 . . . . . . . . . . 11  |-  X_ x  e.  (/)  U. ( (/) `  x )  e.  Fin
4339, 42eqeltrri 2460 . . . . . . . . . 10  |-  U. ( Xt_ `  (/) )  e.  Fin
44 pwfi 7339 . . . . . . . . . 10  |-  ( U. ( Xt_ `  (/) )  e. 
Fin 
<->  ~P U. ( Xt_ `  (/) )  e.  Fin )
4543, 44mpbi 200 . . . . . . . . 9  |-  ~P U. ( Xt_ `  (/) )  e. 
Fin
46 pwuni 4338 . . . . . . . . 9  |-  ( Xt_ `  (/) )  C_  ~P U. ( Xt_ `  (/) )
47 ssfi 7267 . . . . . . . . 9  |-  ( ( ~P U. ( Xt_ `  (/) )  e.  Fin  /\  ( Xt_ `  (/) )  C_  ~P U. ( Xt_ `  (/) ) )  ->  ( Xt_ `  (/) )  e. 
Fin )
4845, 46, 47mp2an 654 . . . . . . . 8  |-  ( Xt_ `  (/) )  e.  Fin
49 elin 3475 . . . . . . . 8  |-  ( (
Xt_ `  (/) )  e.  ( Top  i^i  Fin ) 
<->  ( ( Xt_ `  (/) )  e. 
Top  /\  ( Xt_ `  (/) )  e.  Fin ) )
5036, 48, 49mpbir2an 887 . . . . . . 7  |-  ( Xt_ `  (/) )  e.  ( Top  i^i  Fin )
51 fincmp 17380 . . . . . . 7  |-  ( (
Xt_ `  (/) )  e.  ( Top  i^i  Fin )  ->  ( Xt_ `  (/) )  e. 
Comp )
5250, 51ax-mp 8 . . . . . 6  |-  ( Xt_ `  (/) )  e.  Comp
5352a1ii 25 . . . . 5  |-  ( (/)  C_  A  ->  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  (/) )  e.  Comp ) )
54 ssun1 3455 . . . . . . . . 9  |-  y  C_  ( y  u.  {
z } )
55 id 20 . . . . . . . . 9  |-  ( ( y  u.  { z } )  C_  A  ->  ( y  u.  {
z } )  C_  A )
5654, 55syl5ss 3304 . . . . . . . 8  |-  ( ( y  u.  { z } )  C_  A  ->  y  C_  A )
5756imim1i 56 . . . . . . 7  |-  ( ( y  C_  A  ->  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  y ) )  e.  Comp ) )  -> 
( ( y  u. 
{ z } ) 
C_  A  ->  (
( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  y ) )  e.  Comp ) ) )
58 eqid 2389 . . . . . . . . . . . . . 14  |-  U. ( Xt_ `  ( F  |`  y ) )  = 
U. ( Xt_ `  ( F  |`  y ) )
59 eqid 2389 . . . . . . . . . . . . . 14  |-  U. ( Xt_ `  ( F  |`  { z } ) )  =  U. ( Xt_ `  ( F  |`  { z } ) )
60 eqid 2389 . . . . . . . . . . . . . 14  |-  ( Xt_ `  ( F  |`  (
y  u.  { z } ) ) )  =  ( Xt_ `  ( F  |`  ( y  u. 
{ z } ) ) )
61 resabs1 5117 . . . . . . . . . . . . . . . . 17  |-  ( y 
C_  ( y  u. 
{ z } )  ->  ( ( F  |`  ( y  u.  {
z } ) )  |`  y )  =  ( F  |`  y )
)
6254, 61ax-mp 8 . . . . . . . . . . . . . . . 16  |-  ( ( F  |`  ( y  u.  { z } ) )  |`  y )  =  ( F  |`  y )
6362eqcomi 2393 . . . . . . . . . . . . . . 15  |-  ( F  |`  y )  =  ( ( F  |`  (
y  u.  { z } ) )  |`  y )
6463fveq2i 5673 . . . . . . . . . . . . . 14  |-  ( Xt_ `  ( F  |`  y
) )  =  (
Xt_ `  ( ( F  |`  ( y  u. 
{ z } ) )  |`  y )
)
65 ssun2 3456 . . . . . . . . . . . . . . . . 17  |-  { z }  C_  ( y  u.  { z } )
66 resabs1 5117 . . . . . . . . . . . . . . . . 17  |-  ( { z }  C_  (
y  u.  { z } )  ->  (
( F  |`  (
y  u.  { z } ) )  |`  { z } )  =  ( F  |`  { z } ) )
6765, 66ax-mp 8 . . . . . . . . . . . . . . . 16  |-  ( ( F  |`  ( y  u.  { z } ) )  |`  { z } )  =  ( F  |`  { z } )
6867eqcomi 2393 . . . . . . . . . . . . . . 15  |-  ( F  |`  { z } )  =  ( ( F  |`  ( y  u.  {
z } ) )  |`  { z } )
6968fveq2i 5673 . . . . . . . . . . . . . 14  |-  ( Xt_ `  ( F  |`  { z } ) )  =  ( Xt_ `  (
( F  |`  (
y  u.  { z } ) )  |`  { z } ) )
70 eqid 2389 . . . . . . . . . . . . . 14  |-  ( u  e.  U. ( Xt_ `  ( F  |`  y
) ) ,  v  e.  U. ( Xt_ `  ( F  |`  { z } ) )  |->  ( u  u.  v ) )  =  ( u  e.  U. ( Xt_ `  ( F  |`  y
) ) ,  v  e.  U. ( Xt_ `  ( F  |`  { z } ) )  |->  ( u  u.  v ) )
71 vex 2904 . . . . . . . . . . . . . . . 16  |-  y  e. 
_V
72 snex 4348 . . . . . . . . . . . . . . . 16  |-  { z }  e.  _V
7371, 72unex 4649 . . . . . . . . . . . . . . 15  |-  ( y  u.  { z } )  e.  _V
7473a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( y  u.  { z } )  e.  _V )
75 simplr 732 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  F : A
--> Comp )
76 cmptop 17382 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  Comp  ->  x  e. 
Top )
7776ssriv 3297 . . . . . . . . . . . . . . . 16  |-  Comp  C_  Top
78 fss 5541 . . . . . . . . . . . . . . . 16  |-  ( ( F : A --> Comp  /\  Comp  C_ 
Top )  ->  F : A --> Top )
7975, 77, 78sylancl 644 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  F : A
--> Top )
80 simprr 734 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( y  u.  { z } ) 
C_  A )
81 fssres 5552 . . . . . . . . . . . . . . 15  |-  ( ( F : A --> Top  /\  ( y  u.  {
z } )  C_  A )  ->  ( F  |`  ( y  u. 
{ z } ) ) : ( y  u.  { z } ) --> Top )
8279, 80, 81syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( F  |`  ( y  u.  {
z } ) ) : ( y  u. 
{ z } ) --> Top )
83 eqidd 2390 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( y  u.  { z } )  =  ( y  u. 
{ z } ) )
84 simprl 733 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  -.  z  e.  y )
85 disjsn 3813 . . . . . . . . . . . . . . 15  |-  ( ( y  i^i  { z } )  =  (/)  <->  -.  z  e.  y )
8684, 85sylibr 204 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( y  i^i  { z } )  =  (/) )
8758, 59, 60, 64, 69, 70, 74, 82, 83, 86ptunhmeo 17763 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( u  e.  U. ( Xt_ `  ( F  |`  y ) ) ,  v  e.  U. ( Xt_ `  ( F  |`  { z } ) )  |->  ( u  u.  v ) )  e.  ( ( ( Xt_ `  ( F  |`  y
) )  tX  ( Xt_ `  ( F  |`  { z } ) ) )  Homeo  ( Xt_ `  ( F  |`  (
y  u.  { z } ) ) ) ) )
88 hmphi 17732 . . . . . . . . . . . . 13  |-  ( ( u  e.  U. ( Xt_ `  ( F  |`  y ) ) ,  v  e.  U. ( Xt_ `  ( F  |`  { z } ) )  |->  ( u  u.  v ) )  e.  ( ( ( Xt_ `  ( F  |`  y
) )  tX  ( Xt_ `  ( F  |`  { z } ) ) )  Homeo  ( Xt_ `  ( F  |`  (
y  u.  { z } ) ) ) )  ->  ( ( Xt_ `  ( F  |`  y ) )  tX  ( Xt_ `  ( F  |`  { z } ) ) )  ~=  ( Xt_ `  ( F  |`  ( y  u.  {
z } ) ) ) )
8987, 88syl 16 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( ( Xt_ `  ( F  |`  y ) )  tX  ( Xt_ `  ( F  |`  { z } ) ) )  ~=  ( Xt_ `  ( F  |`  ( y  u.  {
z } ) ) ) )
901ad2antlr 708 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  F  Fn  A )
9165, 80syl5ss 3304 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  { z }  C_  A )
92 vex 2904 . . . . . . . . . . . . . . . . . 18  |-  z  e. 
_V
9392snss 3871 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  A  <->  { z }  C_  A )
9491, 93sylibr 204 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  z  e.  A )
95 fnressn 5859 . . . . . . . . . . . . . . . 16  |-  ( ( F  Fn  A  /\  z  e.  A )  ->  ( F  |`  { z } )  =  { <. z ,  ( F `
 z ) >. } )
9690, 94, 95syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( F  |` 
{ z } )  =  { <. z ,  ( F `  z ) >. } )
9796fveq2d 5674 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( Xt_ `  ( F  |`  { z } ) )  =  ( Xt_ `  { <. z ,  ( F `
 z ) >. } ) )
98 eqid 2389 . . . . . . . . . . . . . . . . 17  |-  ( Xt_ `  { <. z ,  ( F `  z )
>. } )  =  (
Xt_ `  { <. z ,  ( F `  z ) >. } )
9992a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  z  e.  _V )
10075, 94ffvelrnd 5812 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( F `  z )  e.  Comp )
10177, 100sseldi 3291 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( F `  z )  e.  Top )
102 eqid 2389 . . . . . . . . . . . . . . . . . . 19  |-  U. ( F `  z )  =  U. ( F `  z )
103102toptopon 16923 . . . . . . . . . . . . . . . . . 18  |-  ( ( F `  z )  e.  Top  <->  ( F `  z )  e.  (TopOn `  U. ( F `  z ) ) )
104101, 103sylib 189 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( F `  z )  e.  (TopOn `  U. ( F `  z ) ) )
10598, 99, 104pt1hmeo 17761 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( x  e.  U. ( F `  z )  |->  { <. z ,  x >. } )  e.  ( ( F `
 z )  Homeo  (
Xt_ `  { <. z ,  ( F `  z ) >. } ) ) )
106 hmphi 17732 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  U. ( F `  z )  |->  { <. z ,  x >. } )  e.  ( ( F `  z
)  Homeo  ( Xt_ `  { <. z ,  ( F `
 z ) >. } ) )  -> 
( F `  z
)  ~=  ( Xt_ `  { <. z ,  ( F `  z )
>. } ) )
107105, 106syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( F `  z )  ~=  ( Xt_ `  { <. z ,  ( F `  z ) >. } ) )
108 cmphmph 17743 . . . . . . . . . . . . . . 15  |-  ( ( F `  z )  ~=  ( Xt_ `  { <. z ,  ( F `
 z ) >. } )  ->  (
( F `  z
)  e.  Comp  ->  (
Xt_ `  { <. z ,  ( F `  z ) >. } )  e.  Comp ) )
109107, 100, 108sylc 58 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( Xt_ `  { <. z ,  ( F `  z )
>. } )  e.  Comp )
11097, 109eqeltrd 2463 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( Xt_ `  ( F  |`  { z } ) )  e. 
Comp )
111 txcmp 17598 . . . . . . . . . . . . . 14  |-  ( ( ( Xt_ `  ( F  |`  y ) )  e.  Comp  /\  ( Xt_ `  ( F  |`  { z } ) )  e.  Comp )  ->  ( ( Xt_ `  ( F  |`  y ) ) 
tX  ( Xt_ `  ( F  |`  { z } ) ) )  e. 
Comp )
112111expcom 425 . . . . . . . . . . . . 13  |-  ( (
Xt_ `  ( F  |` 
{ z } ) )  e.  Comp  ->  ( ( Xt_ `  ( F  |`  y ) )  e.  Comp  ->  ( (
Xt_ `  ( F  |`  y ) )  tX  ( Xt_ `  ( F  |`  { z } ) ) )  e.  Comp ) )
113110, 112syl 16 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( ( Xt_ `  ( F  |`  y ) )  e. 
Comp  ->  ( ( Xt_ `  ( F  |`  y
) )  tX  ( Xt_ `  ( F  |`  { z } ) ) )  e.  Comp ) )
114 cmphmph 17743 . . . . . . . . . . . 12  |-  ( ( ( Xt_ `  ( F  |`  y ) ) 
tX  ( Xt_ `  ( F  |`  { z } ) ) )  ~=  ( Xt_ `  ( F  |`  ( y  u.  {
z } ) ) )  ->  ( (
( Xt_ `  ( F  |`  y ) )  tX  ( Xt_ `  ( F  |`  { z } ) ) )  e.  Comp  -> 
( Xt_ `  ( F  |`  ( y  u.  {
z } ) ) )  e.  Comp )
)
11589, 113, 114sylsyld 54 . . . . . . . . . . 11  |-  ( ( ( A  e.  Fin  /\  F : A --> Comp )  /\  ( -.  z  e.  y  /\  ( y  u.  { z } )  C_  A )
)  ->  ( ( Xt_ `  ( F  |`  y ) )  e. 
Comp  ->  ( Xt_ `  ( F  |`  ( y  u. 
{ z } ) ) )  e.  Comp ) )
116115expcom 425 . . . . . . . . . 10  |-  ( ( -.  z  e.  y  /\  ( y  u. 
{ z } ) 
C_  A )  -> 
( ( A  e. 
Fin  /\  F : A
--> Comp )  ->  (
( Xt_ `  ( F  |`  y ) )  e. 
Comp  ->  ( Xt_ `  ( F  |`  ( y  u. 
{ z } ) ) )  e.  Comp ) ) )
117116a2d 24 . . . . . . . . 9  |-  ( ( -.  z  e.  y  /\  ( y  u. 
{ z } ) 
C_  A )  -> 
( ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  y ) )  e. 
Comp )  ->  (
( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  ( y  u. 
{ z } ) ) )  e.  Comp ) ) )
118117ex 424 . . . . . . . 8  |-  ( -.  z  e.  y  -> 
( ( y  u. 
{ z } ) 
C_  A  ->  (
( ( A  e. 
Fin  /\  F : A
--> Comp )  ->  ( Xt_ `  ( F  |`  y ) )  e. 
Comp )  ->  (
( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  ( y  u. 
{ z } ) ) )  e.  Comp ) ) ) )
119118a2d 24 . . . . . . 7  |-  ( -.  z  e.  y  -> 
( ( ( y  u.  { z } )  C_  A  ->  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  y ) )  e.  Comp ) )  -> 
( ( y  u. 
{ z } ) 
C_  A  ->  (
( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  ( y  u. 
{ z } ) ) )  e.  Comp ) ) ) )
12057, 119syl5 30 . . . . . 6  |-  ( -.  z  e.  y  -> 
( ( y  C_  A  ->  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  y ) )  e. 
Comp ) )  -> 
( ( y  u. 
{ z } ) 
C_  A  ->  (
( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  ( y  u. 
{ z } ) ) )  e.  Comp ) ) ) )
121120adantl 453 . . . . 5  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( (
y  C_  A  ->  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  y ) )  e.  Comp ) )  -> 
( ( y  u. 
{ z } ) 
C_  A  ->  (
( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  ( y  u. 
{ z } ) ) )  e.  Comp ) ) ) )
12214, 20, 26, 32, 53, 121findcard2s 7287 . . . 4  |-  ( A  e.  Fin  ->  ( A  C_  A  ->  (
( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  A ) )  e.  Comp ) ) )
1236, 122mpi 17 . . 3  |-  ( A  e.  Fin  ->  (
( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  A ) )  e.  Comp ) )
124123anabsi5 791 . 2  |-  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  ( F  |`  A ) )  e.  Comp )
1255, 124eqeltrrd 2464 1  |-  ( ( A  e.  Fin  /\  F : A --> Comp )  ->  ( Xt_ `  F
)  e.  Comp )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   _Vcvv 2901    u. cun 3263    i^i cin 3264    C_ wss 3265   (/)c0 3573   ~Pcpw 3744   {csn 3759   <.cop 3762   U.cuni 3959   class class class wbr 4155    e. cmpt 4209    |` cres 4822    Fn wfn 5391   -->wf 5392   ` cfv 5396  (class class class)co 6022    e. cmpt2 6024   X_cixp 7001   Fincfn 7047   Xt_cpt 13595   Topctop 16883  TopOnctopon 16884   Compccmp 17373    tX ctx 17515    Homeo chmeo 17708    ~= chmph 17709
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-reu 2658  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-iin 4040  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-recs 6571  df-rdg 6606  df-1o 6662  df-2o 6663  df-oadd 6666  df-er 6843  df-map 6958  df-ixp 7002  df-en 7048  df-dom 7049  df-sdom 7050  df-fin 7051  df-fi 7353  df-topgen 13596  df-pt 13597  df-top 16888  df-bases 16890  df-topon 16891  df-cn 17215  df-cnp 17216  df-cmp 17374  df-tx 17517  df-hmeo 17710  df-hmph 17711
  Copyright terms: Public domain W3C validator