MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmpg Structured version   Unicode version

Theorem ptcmpg 18088
Description: Tychonoff's theorem: The product of compact spaces is compact. The choice principles needed are encoded in the last hypothesis: the base set of the product must be well-orderable and satisfy the ultrafilter lemma. Both these assumptions are satisfied if  ~P ~P X is well-orderable, so if we assume the Axiom of Choice we can eliminate them (see ptcmp 18089). (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypotheses
Ref Expression
ptcmpg.1  |-  J  =  ( Xt_ `  F
)
ptcmpg.2  |-  X  = 
U. J
Assertion
Ref Expression
ptcmpg  |-  ( ( A  e.  V  /\  F : A --> Comp  /\  X  e.  (UFL  i^i  dom  card )
)  ->  J  e.  Comp )

Proof of Theorem ptcmpg
Dummy variables  a 
b  k  m  n  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptcmpg.1 . 2  |-  J  =  ( Xt_ `  F
)
2 nfcv 2572 . . . 4  |-  F/_ k
( F `  a
)
3 nfcv 2572 . . . 4  |-  F/_ a
( F `  k
)
4 nfcv 2572 . . . 4  |-  F/_ k
( `' ( w  e.  X_ n  e.  A  U. ( F `  n
)  |->  ( w `  a ) ) "
b )
5 nfcv 2572 . . . 4  |-  F/_ u
( `' ( w  e.  X_ n  e.  A  U. ( F `  n
)  |->  ( w `  a ) ) "
b )
6 nfcv 2572 . . . 4  |-  F/_ a
( `' ( w  e.  X_ n  e.  A  U. ( F `  n
)  |->  ( w `  k ) ) "
u )
7 nfcv 2572 . . . 4  |-  F/_ b
( `' ( w  e.  X_ n  e.  A  U. ( F `  n
)  |->  ( w `  k ) ) "
u )
8 fveq2 5728 . . . 4  |-  ( a  =  k  ->  ( F `  a )  =  ( F `  k ) )
9 fveq2 5728 . . . . . . . 8  |-  ( a  =  k  ->  (
w `  a )  =  ( w `  k ) )
109mpteq2dv 4296 . . . . . . 7  |-  ( a  =  k  ->  (
w  e.  X_ n  e.  A  U. ( F `  n )  |->  ( w `  a
) )  =  ( w  e.  X_ n  e.  A  U. ( F `  n )  |->  ( w `  k
) ) )
1110cnveqd 5048 . . . . . 6  |-  ( a  =  k  ->  `' ( w  e.  X_ n  e.  A  U. ( F `  n )  |->  ( w `  a
) )  =  `' ( w  e.  X_ n  e.  A  U. ( F `  n )  |->  ( w `  k
) ) )
1211imaeq1d 5202 . . . . 5  |-  ( a  =  k  ->  ( `' ( w  e.  X_ n  e.  A  U. ( F `  n
)  |->  ( w `  a ) ) "
b )  =  ( `' ( w  e.  X_ n  e.  A  U. ( F `  n
)  |->  ( w `  k ) ) "
b ) )
13 imaeq2 5199 . . . . 5  |-  ( b  =  u  ->  ( `' ( w  e.  X_ n  e.  A  U. ( F `  n
)  |->  ( w `  k ) ) "
b )  =  ( `' ( w  e.  X_ n  e.  A  U. ( F `  n
)  |->  ( w `  k ) ) "
u ) )
1412, 13sylan9eq 2488 . . . 4  |-  ( ( a  =  k  /\  b  =  u )  ->  ( `' ( w  e.  X_ n  e.  A  U. ( F `  n
)  |->  ( w `  a ) ) "
b )  =  ( `' ( w  e.  X_ n  e.  A  U. ( F `  n
)  |->  ( w `  k ) ) "
u ) )
152, 3, 4, 5, 6, 7, 8, 14cbvmpt2x 6150 . . 3  |-  ( a  e.  A ,  b  e.  ( F `  a )  |->  ( `' ( w  e.  X_ n  e.  A  U. ( F `  n ) 
|->  ( w `  a
) ) " b
) )  =  ( k  e.  A ,  u  e.  ( F `  k )  |->  ( `' ( w  e.  X_ n  e.  A  U. ( F `  n ) 
|->  ( w `  k
) ) " u
) )
16 fveq2 5728 . . . . 5  |-  ( n  =  m  ->  ( F `  n )  =  ( F `  m ) )
1716unieqd 4026 . . . 4  |-  ( n  =  m  ->  U. ( F `  n )  =  U. ( F `  m ) )
1817cbvixpv 7080 . . 3  |-  X_ n  e.  A  U. ( F `  n )  =  X_ m  e.  A  U. ( F `  m
)
19 simp1 957 . . 3  |-  ( ( A  e.  V  /\  F : A --> Comp  /\  X  e.  (UFL  i^i  dom  card )
)  ->  A  e.  V )
20 simp2 958 . . 3  |-  ( ( A  e.  V  /\  F : A --> Comp  /\  X  e.  (UFL  i^i  dom  card )
)  ->  F : A
--> Comp )
21 cmptop 17458 . . . . . . . 8  |-  ( k  e.  Comp  ->  k  e. 
Top )
2221ssriv 3352 . . . . . . 7  |-  Comp  C_  Top
23 fss 5599 . . . . . . 7  |-  ( ( F : A --> Comp  /\  Comp  C_ 
Top )  ->  F : A --> Top )
2420, 22, 23sylancl 644 . . . . . 6  |-  ( ( A  e.  V  /\  F : A --> Comp  /\  X  e.  (UFL  i^i  dom  card )
)  ->  F : A
--> Top )
251ptuni 17626 . . . . . 6  |-  ( ( A  e.  V  /\  F : A --> Top )  -> 
X_ n  e.  A  U. ( F `  n
)  =  U. J
)
2619, 24, 25syl2anc 643 . . . . 5  |-  ( ( A  e.  V  /\  F : A --> Comp  /\  X  e.  (UFL  i^i  dom  card )
)  ->  X_ n  e.  A  U. ( F `
 n )  = 
U. J )
27 ptcmpg.2 . . . . 5  |-  X  = 
U. J
2826, 27syl6eqr 2486 . . . 4  |-  ( ( A  e.  V  /\  F : A --> Comp  /\  X  e.  (UFL  i^i  dom  card )
)  ->  X_ n  e.  A  U. ( F `
 n )  =  X )
29 simp3 959 . . . 4  |-  ( ( A  e.  V  /\  F : A --> Comp  /\  X  e.  (UFL  i^i  dom  card )
)  ->  X  e.  (UFL  i^i  dom  card ) )
3028, 29eqeltrd 2510 . . 3  |-  ( ( A  e.  V  /\  F : A --> Comp  /\  X  e.  (UFL  i^i  dom  card )
)  ->  X_ n  e.  A  U. ( F `
 n )  e.  (UFL  i^i  dom  card )
)
3115, 18, 19, 20, 30ptcmplem5 18087 . 2  |-  ( ( A  e.  V  /\  F : A --> Comp  /\  X  e.  (UFL  i^i  dom  card )
)  ->  ( Xt_ `  F )  e.  Comp )
321, 31syl5eqel 2520 1  |-  ( ( A  e.  V  /\  F : A --> Comp  /\  X  e.  (UFL  i^i  dom  card )
)  ->  J  e.  Comp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    = wceq 1652    e. wcel 1725    i^i cin 3319    C_ wss 3320   U.cuni 4015    e. cmpt 4266   `'ccnv 4877   dom cdm 4878   "cima 4881   -->wf 5450   ` cfv 5454    e. cmpt2 6083   X_cixp 7063   cardccrd 7822   Xt_cpt 13666   Topctop 16958   Compccmp 17449  UFLcufl 17932
This theorem is referenced by:  ptcmp  18089  dfac21  27141
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-omul 6729  df-er 6905  df-map 7020  df-ixp 7064  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-fi 7416  df-wdom 7527  df-card 7826  df-acn 7829  df-topgen 13667  df-pt 13668  df-fbas 16699  df-fg 16700  df-top 16963  df-bases 16965  df-topon 16966  df-cld 17083  df-ntr 17084  df-cls 17085  df-nei 17162  df-cmp 17450  df-fil 17878  df-ufil 17933  df-ufl 17934  df-flim 17971  df-fcls 17973
  Copyright terms: Public domain W3C validator