MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmplem5 Unicode version

Theorem ptcmplem5 17750
Description: Lemma for ptcmp 17752. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
ptcmp.1  |-  S  =  ( k  e.  A ,  u  e.  ( F `  k )  |->  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u ) )
ptcmp.2  |-  X  = 
X_ n  e.  A  U. ( F `  n
)
ptcmp.3  |-  ( ph  ->  A  e.  V )
ptcmp.4  |-  ( ph  ->  F : A --> Comp )
ptcmp.5  |-  ( ph  ->  X  e.  (UFL  i^i  dom 
card ) )
Assertion
Ref Expression
ptcmplem5  |-  ( ph  ->  ( Xt_ `  F
)  e.  Comp )
Distinct variable groups:    k, n, u, w, A    S, k, n, u    ph, k, n, u    k, V, n, u, w    k, F, n, u, w    k, X, n, u, w
Allowed substitution hints:    ph( w)    S( w)

Proof of Theorem ptcmplem5
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 3389 . . 3  |-  (UFL  i^i  dom 
card )  C_ UFL
2 ptcmp.5 . . 3  |-  ( ph  ->  X  e.  (UFL  i^i  dom 
card ) )
31, 2sseldi 3178 . 2  |-  ( ph  ->  X  e. UFL )
4 ptcmp.1 . . . 4  |-  S  =  ( k  e.  A ,  u  e.  ( F `  k )  |->  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u ) )
5 ptcmp.2 . . . 4  |-  X  = 
X_ n  e.  A  U. ( F `  n
)
6 ptcmp.3 . . . 4  |-  ( ph  ->  A  e.  V )
7 ptcmp.4 . . . 4  |-  ( ph  ->  F : A --> Comp )
84, 5, 6, 7, 2ptcmplem1 17746 . . 3  |-  ( ph  ->  ( X  =  U. ( ran  S  u.  { X } )  /\  ( Xt_ `  F )  =  ( topGen `  ( fi `  ( ran  S  u.  { X } ) ) ) ) )
98simpld 445 . 2  |-  ( ph  ->  X  =  U. ( ran  S  u.  { X } ) )
108simprd 449 . 2  |-  ( ph  ->  ( Xt_ `  F
)  =  ( topGen `  ( fi `  ( ran  S  u.  { X } ) ) ) )
11 elpwi 3633 . . . . . 6  |-  ( y  e.  ~P ran  S  ->  y  C_  ran  S )
126ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  C_  ran  S  /\  X  =  U. y
) )  /\  -.  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  A  e.  V )
137ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  C_  ran  S  /\  X  =  U. y
) )  /\  -.  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  F : A
--> Comp )
142ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  C_  ran  S  /\  X  =  U. y
) )  /\  -.  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  X  e.  (UFL  i^i  dom  card ) )
15 simplrl 736 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  C_  ran  S  /\  X  =  U. y
) )  /\  -.  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  y  C_  ran  S )
16 simplrr 737 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  C_  ran  S  /\  X  =  U. y
) )  /\  -.  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  X  =  U. y )
17 simpr 447 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  C_  ran  S  /\  X  =  U. y
) )  /\  -.  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  -.  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z )
18 imaeq2 5008 . . . . . . . . . . 11  |-  ( z  =  u  ->  ( `' ( w  e.  X  |->  ( w `  k ) ) "
z )  =  ( `' ( w  e.  X  |->  ( w `  k ) ) "
u ) )
1918eleq1d 2349 . . . . . . . . . 10  |-  ( z  =  u  ->  (
( `' ( w  e.  X  |->  ( w `
 k ) )
" z )  e.  y  <->  ( `' ( w  e.  X  |->  ( w `  k ) ) " u )  e.  y ) )
2019cbvrabv 2787 . . . . . . . . 9  |-  { z  e.  ( F `  k )  |  ( `' ( w  e.  X  |->  ( w `  k ) ) "
z )  e.  y }  =  { u  e.  ( F `  k
)  |  ( `' ( w  e.  X  |->  ( w `  k
) ) " u
)  e.  y }
214, 5, 12, 13, 14, 15, 16, 17, 20ptcmplem4 17749 . . . . . . . 8  |-  -.  (
( ph  /\  (
y  C_  ran  S  /\  X  =  U. y
) )  /\  -.  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)
22 iman 413 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  C_  ran  S  /\  X  =  U. y
) )  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z )  <->  -.  (
( ph  /\  (
y  C_  ran  S  /\  X  =  U. y
) )  /\  -.  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
) )
2321, 22mpbir 200 . . . . . . 7  |-  ( (
ph  /\  ( y  C_ 
ran  S  /\  X  = 
U. y ) )  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z )
2423expr 598 . . . . . 6  |-  ( (
ph  /\  y  C_  ran  S )  ->  ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z ) )
2511, 24sylan2 460 . . . . 5  |-  ( (
ph  /\  y  e.  ~P ran  S )  -> 
( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z ) )
2625adantlr 695 . . . 4  |-  ( ( ( ph  /\  y  C_  ( ran  S  u.  { X } ) )  /\  y  e.  ~P ran  S )  ->  ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z ) )
27 vex 2791 . . . . . . . 8  |-  y  e. 
_V
2827elpw 3631 . . . . . . 7  |-  ( y  e.  ~P ( ran 
S  u.  { X } )  <->  y  C_  ( ran  S  u.  { X } ) )
29 eldif 3162 . . . . . . . 8  |-  ( y  e.  ( ~P ( ran  S  u.  { X } )  \  ~P ran  S )  <->  ( y  e.  ~P ( ran  S  u.  { X } )  /\  -.  y  e. 
~P ran  S )
)
30 elpwunsn 4568 . . . . . . . 8  |-  ( y  e.  ( ~P ( ran  S  u.  { X } )  \  ~P ran  S )  ->  X  e.  y )
3129, 30sylbir 204 . . . . . . 7  |-  ( ( y  e.  ~P ( ran  S  u.  { X } )  /\  -.  y  e.  ~P ran  S )  ->  X  e.  y )
3228, 31sylanbr 459 . . . . . 6  |-  ( ( y  C_  ( ran  S  u.  { X }
)  /\  -.  y  e.  ~P ran  S )  ->  X  e.  y )
3332adantll 694 . . . . 5  |-  ( ( ( ph  /\  y  C_  ( ran  S  u.  { X } ) )  /\  -.  y  e. 
~P ran  S )  ->  X  e.  y )
34 snssi 3759 . . . . . . . . 9  |-  ( X  e.  y  ->  { X }  C_  y )
3534adantl 452 . . . . . . . 8  |-  ( ( ( ph  /\  y  C_  ( ran  S  u.  { X } ) )  /\  X  e.  y )  ->  { X }  C_  y )
36 snfi 6941 . . . . . . . . 9  |-  { X }  e.  Fin
3736a1i 10 . . . . . . . 8  |-  ( ( ( ph  /\  y  C_  ( ran  S  u.  { X } ) )  /\  X  e.  y )  ->  { X }  e.  Fin )
38 elfpw 7157 . . . . . . . 8  |-  ( { X }  e.  ( ~P y  i^i  Fin ) 
<->  ( { X }  C_  y  /\  { X }  e.  Fin )
)
3935, 37, 38sylanbrc 645 . . . . . . 7  |-  ( ( ( ph  /\  y  C_  ( ran  S  u.  { X } ) )  /\  X  e.  y )  ->  { X }  e.  ( ~P y  i^i  Fin ) )
40 unisng 3844 . . . . . . . . 9  |-  ( X  e.  y  ->  U. { X }  =  X
)
4140eqcomd 2288 . . . . . . . 8  |-  ( X  e.  y  ->  X  =  U. { X }
)
4241adantl 452 . . . . . . 7  |-  ( ( ( ph  /\  y  C_  ( ran  S  u.  { X } ) )  /\  X  e.  y )  ->  X  =  U. { X } )
43 unieq 3836 . . . . . . . . 9  |-  ( z  =  { X }  ->  U. z  =  U. { X } )
4443eqeq2d 2294 . . . . . . . 8  |-  ( z  =  { X }  ->  ( X  =  U. z 
<->  X  =  U. { X } ) )
4544rspcev 2884 . . . . . . 7  |-  ( ( { X }  e.  ( ~P y  i^i  Fin )  /\  X  =  U. { X } )  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)
4639, 42, 45syl2anc 642 . . . . . 6  |-  ( ( ( ph  /\  y  C_  ( ran  S  u.  { X } ) )  /\  X  e.  y )  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z )
4746a1d 22 . . . . 5  |-  ( ( ( ph  /\  y  C_  ( ran  S  u.  { X } ) )  /\  X  e.  y )  ->  ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z ) )
4833, 47syldan 456 . . . 4  |-  ( ( ( ph  /\  y  C_  ( ran  S  u.  { X } ) )  /\  -.  y  e. 
~P ran  S )  ->  ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z ) )
4926, 48pm2.61dan 766 . . 3  |-  ( (
ph  /\  y  C_  ( ran  S  u.  { X } ) )  -> 
( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z ) )
5049impr 602 . 2  |-  ( (
ph  /\  ( y  C_  ( ran  S  u.  { X } )  /\  X  =  U. y
) )  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z )
513, 9, 10, 50alexsub 17739 1  |-  ( ph  ->  ( Xt_ `  F
)  e.  Comp )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   E.wrex 2544   {crab 2547    \ cdif 3149    u. cun 3150    i^i cin 3151    C_ wss 3152   ~Pcpw 3625   {csn 3640   U.cuni 3827    e. cmpt 4077   `'ccnv 4688   dom cdm 4689   ran crn 4690   "cima 4692   -->wf 5251   ` cfv 5255    e. cmpt2 5860   X_cixp 6817   Fincfn 6863   ficfi 7164   cardccrd 7568   topGenctg 13342   Xt_cpt 13343   Compccmp 17113  UFLcufl 17595
This theorem is referenced by:  ptcmpg  17751
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-er 6660  df-map 6774  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-wdom 7273  df-card 7572  df-acn 7575  df-topgen 13344  df-pt 13345  df-top 16636  df-bases 16638  df-topon 16639  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-cmp 17114  df-fbas 17520  df-fg 17521  df-fil 17541  df-ufil 17596  df-ufl 17597  df-flim 17634  df-fcls 17636
  Copyright terms: Public domain W3C validator