MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcn Structured version   Unicode version

Theorem ptcn 17651
Description: If every projection of a function is continuous, then the function itself is continuous into the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypotheses
Ref Expression
ptcn.2  |-  K  =  ( Xt_ `  F
)
ptcn.3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
ptcn.4  |-  ( ph  ->  I  e.  V )
ptcn.5  |-  ( ph  ->  F : I --> Top )
ptcn.6  |-  ( (
ph  /\  k  e.  I )  ->  (
x  e.  X  |->  A )  e.  ( J  Cn  ( F `  k ) ) )
Assertion
Ref Expression
ptcn  |-  ( ph  ->  ( x  e.  X  |->  ( k  e.  I  |->  A ) )  e.  ( J  Cn  K
) )
Distinct variable groups:    x, k, F    k, I, x    k, J    ph, k, x    k, X, x    x, K    k, V, x
Allowed substitution hints:    A( x, k)    J( x)    K( k)

Proof of Theorem ptcn
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ptcn.3 . . . . . . . . . . 11  |-  ( ph  ->  J  e.  (TopOn `  X ) )
21adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  I )  ->  J  e.  (TopOn `  X )
)
3 ptcn.5 . . . . . . . . . . . 12  |-  ( ph  ->  F : I --> Top )
43ffvelrnda 5862 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  I )  ->  ( F `  k )  e.  Top )
5 eqid 2435 . . . . . . . . . . . 12  |-  U. ( F `  k )  =  U. ( F `  k )
65toptopon 16990 . . . . . . . . . . 11  |-  ( ( F `  k )  e.  Top  <->  ( F `  k )  e.  (TopOn `  U. ( F `  k ) ) )
74, 6sylib 189 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  I )  ->  ( F `  k )  e.  (TopOn `  U. ( F `
 k ) ) )
8 ptcn.6 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  I )  ->  (
x  e.  X  |->  A )  e.  ( J  Cn  ( F `  k ) ) )
9 cnf2 17305 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  X )  /\  ( F `  k )  e.  (TopOn `  U. ( F `
 k ) )  /\  ( x  e.  X  |->  A )  e.  ( J  Cn  ( F `  k )
) )  ->  (
x  e.  X  |->  A ) : X --> U. ( F `  k )
)
102, 7, 8, 9syl3anc 1184 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  I )  ->  (
x  e.  X  |->  A ) : X --> U. ( F `  k )
)
11 eqid 2435 . . . . . . . . . 10  |-  ( x  e.  X  |->  A )  =  ( x  e.  X  |->  A )
1211fmpt 5882 . . . . . . . . 9  |-  ( A. x  e.  X  A  e.  U. ( F `  k )  <->  ( x  e.  X  |->  A ) : X --> U. ( F `  k )
)
1310, 12sylibr 204 . . . . . . . 8  |-  ( (
ph  /\  k  e.  I )  ->  A. x  e.  X  A  e.  U. ( F `  k
) )
1413r19.21bi 2796 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  I )  /\  x  e.  X )  ->  A  e.  U. ( F `  k ) )
1514an32s 780 . . . . . 6  |-  ( ( ( ph  /\  x  e.  X )  /\  k  e.  I )  ->  A  e.  U. ( F `  k ) )
1615ralrimiva 2781 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  A. k  e.  I  A  e.  U. ( F `  k
) )
17 ptcn.4 . . . . . . 7  |-  ( ph  ->  I  e.  V )
1817adantr 452 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  I  e.  V )
19 mptelixpg 7091 . . . . . 6  |-  ( I  e.  V  ->  (
( k  e.  I  |->  A )  e.  X_ k  e.  I  U. ( F `  k )  <->  A. k  e.  I  A  e.  U. ( F `  k )
) )
2018, 19syl 16 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  (
( k  e.  I  |->  A )  e.  X_ k  e.  I  U. ( F `  k )  <->  A. k  e.  I  A  e.  U. ( F `  k )
) )
2116, 20mpbird 224 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  (
k  e.  I  |->  A )  e.  X_ k  e.  I  U. ( F `  k )
)
22 ptcn.2 . . . . . . 7  |-  K  =  ( Xt_ `  F
)
2322ptuni 17618 . . . . . 6  |-  ( ( I  e.  V  /\  F : I --> Top )  -> 
X_ k  e.  I  U. ( F `  k
)  =  U. K
)
2417, 3, 23syl2anc 643 . . . . 5  |-  ( ph  -> 
X_ k  e.  I  U. ( F `  k
)  =  U. K
)
2524adantr 452 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  X_ k  e.  I  U. ( F `  k )  =  U. K )
2621, 25eleqtrd 2511 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
k  e.  I  |->  A )  e.  U. K
)
27 eqid 2435 . . 3  |-  ( x  e.  X  |->  ( k  e.  I  |->  A ) )  =  ( x  e.  X  |->  ( k  e.  I  |->  A ) )
2826, 27fmptd 5885 . 2  |-  ( ph  ->  ( x  e.  X  |->  ( k  e.  I  |->  A ) ) : X --> U. K )
291adantr 452 . . . 4  |-  ( (
ph  /\  z  e.  X )  ->  J  e.  (TopOn `  X )
)
3017adantr 452 . . . 4  |-  ( (
ph  /\  z  e.  X )  ->  I  e.  V )
313adantr 452 . . . 4  |-  ( (
ph  /\  z  e.  X )  ->  F : I --> Top )
32 simpr 448 . . . 4  |-  ( (
ph  /\  z  e.  X )  ->  z  e.  X )
338adantlr 696 . . . . 5  |-  ( ( ( ph  /\  z  e.  X )  /\  k  e.  I )  ->  (
x  e.  X  |->  A )  e.  ( J  Cn  ( F `  k ) ) )
34 simplr 732 . . . . . 6  |-  ( ( ( ph  /\  z  e.  X )  /\  k  e.  I )  ->  z  e.  X )
35 toponuni 16984 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
361, 35syl 16 . . . . . . 7  |-  ( ph  ->  X  =  U. J
)
3736ad2antrr 707 . . . . . 6  |-  ( ( ( ph  /\  z  e.  X )  /\  k  e.  I )  ->  X  =  U. J )
3834, 37eleqtrd 2511 . . . . 5  |-  ( ( ( ph  /\  z  e.  X )  /\  k  e.  I )  ->  z  e.  U. J )
39 eqid 2435 . . . . . 6  |-  U. J  =  U. J
4039cncnpi 17334 . . . . 5  |-  ( ( ( x  e.  X  |->  A )  e.  ( J  Cn  ( F `
 k ) )  /\  z  e.  U. J )  ->  (
x  e.  X  |->  A )  e.  ( ( J  CnP  ( F `
 k ) ) `
 z ) )
4133, 38, 40syl2anc 643 . . . 4  |-  ( ( ( ph  /\  z  e.  X )  /\  k  e.  I )  ->  (
x  e.  X  |->  A )  e.  ( ( J  CnP  ( F `
 k ) ) `
 z ) )
4222, 29, 30, 31, 32, 41ptcnp 17646 . . 3  |-  ( (
ph  /\  z  e.  X )  ->  (
x  e.  X  |->  ( k  e.  I  |->  A ) )  e.  ( ( J  CnP  K
) `  z )
)
4342ralrimiva 2781 . 2  |-  ( ph  ->  A. z  e.  X  ( x  e.  X  |->  ( k  e.  I  |->  A ) )  e.  ( ( J  CnP  K ) `  z ) )
44 pttop 17606 . . . . . 6  |-  ( ( I  e.  V  /\  F : I --> Top )  ->  ( Xt_ `  F
)  e.  Top )
4517, 3, 44syl2anc 643 . . . . 5  |-  ( ph  ->  ( Xt_ `  F
)  e.  Top )
4622, 45syl5eqel 2519 . . . 4  |-  ( ph  ->  K  e.  Top )
47 eqid 2435 . . . . 5  |-  U. K  =  U. K
4847toptopon 16990 . . . 4  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
4946, 48sylib 189 . . 3  |-  ( ph  ->  K  e.  (TopOn `  U. K ) )
50 cncnp 17336 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  U. K ) )  ->  ( (
x  e.  X  |->  ( k  e.  I  |->  A ) )  e.  ( J  Cn  K )  <-> 
( ( x  e.  X  |->  ( k  e.  I  |->  A ) ) : X --> U. K  /\  A. z  e.  X  ( x  e.  X  |->  ( k  e.  I  |->  A ) )  e.  ( ( J  CnP  K ) `  z ) ) ) )
511, 49, 50syl2anc 643 . 2  |-  ( ph  ->  ( ( x  e.  X  |->  ( k  e.  I  |->  A ) )  e.  ( J  Cn  K )  <->  ( (
x  e.  X  |->  ( k  e.  I  |->  A ) ) : X --> U. K  /\  A. z  e.  X  ( x  e.  X  |->  ( k  e.  I  |->  A ) )  e.  ( ( J  CnP  K ) `
 z ) ) ) )
5228, 43, 51mpbir2and 889 1  |-  ( ph  ->  ( x  e.  X  |->  ( k  e.  I  |->  A ) )  e.  ( J  Cn  K
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   U.cuni 4007    e. cmpt 4258   -->wf 5442   ` cfv 5446  (class class class)co 6073   X_cixp 7055   Xt_cpt 13658   Topctop 16950  TopOnctopon 16951    Cn ccn 17280    CnP ccnp 17281
This theorem is referenced by:  pt1hmeo  17830  ptunhmeo  17832  symgtgp  18123  prdstmdd  18145  prdstgpd  18146  ptpcon  24912
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-map 7012  df-ixp 7056  df-en 7102  df-dom 7103  df-fin 7105  df-fi 7408  df-topgen 13659  df-pt 13660  df-top 16955  df-bases 16957  df-topon 16958  df-cn 17283  df-cnp 17284
  Copyright terms: Public domain W3C validator