MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthaus Unicode version

Theorem pthaus 17332
Description: The product of a collection of Hausdorff spaces is Hausdorff. (Contributed by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
pthaus  |-  ( ( A  e.  V  /\  F : A --> Haus )  ->  ( Xt_ `  F
)  e.  Haus )

Proof of Theorem pthaus
Dummy variables  k  m  n  x  y 
z  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 haustop 17059 . . . . 5  |-  ( x  e.  Haus  ->  x  e. 
Top )
21ssriv 3184 . . . 4  |-  Haus  C_  Top
3 fss 5397 . . . 4  |-  ( ( F : A --> Haus  /\  Haus  C_ 
Top )  ->  F : A --> Top )
42, 3mpan2 652 . . 3  |-  ( F : A --> Haus  ->  F : A --> Top )
5 pttop 17277 . . 3  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  ( Xt_ `  F
)  e.  Top )
64, 5sylan2 460 . 2  |-  ( ( A  e.  V  /\  F : A --> Haus )  ->  ( Xt_ `  F
)  e.  Top )
7 simprl 732 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  F : A --> Haus )  /\  ( x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  ->  x  e.  U. ( Xt_ `  F
) )
8 eqid 2283 . . . . . . . . . . 11  |-  ( Xt_ `  F )  =  (
Xt_ `  F )
98ptuni 17289 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  F : A --> Top )  -> 
X_ k  e.  A  U. ( F `  k
)  =  U. ( Xt_ `  F ) )
104, 9sylan2 460 . . . . . . . . 9  |-  ( ( A  e.  V  /\  F : A --> Haus )  -> 
X_ k  e.  A  U. ( F `  k
)  =  U. ( Xt_ `  F ) )
1110adantr 451 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  F : A --> Haus )  /\  ( x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  ->  X_ k  e.  A  U. ( F `  k )  =  U. ( Xt_ `  F
) )
127, 11eleqtrrd 2360 . . . . . . 7  |-  ( ( ( A  e.  V  /\  F : A --> Haus )  /\  ( x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  ->  x  e.  X_ k  e.  A  U. ( F `  k
) )
13 ixpfn 6822 . . . . . . 7  |-  ( x  e.  X_ k  e.  A  U. ( F `  k
)  ->  x  Fn  A )
1412, 13syl 15 . . . . . 6  |-  ( ( ( A  e.  V  /\  F : A --> Haus )  /\  ( x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  ->  x  Fn  A )
15 simprr 733 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  F : A --> Haus )  /\  ( x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  ->  y  e.  U. ( Xt_ `  F
) )
1615, 11eleqtrrd 2360 . . . . . . 7  |-  ( ( ( A  e.  V  /\  F : A --> Haus )  /\  ( x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  ->  y  e.  X_ k  e.  A  U. ( F `  k
) )
17 ixpfn 6822 . . . . . . 7  |-  ( y  e.  X_ k  e.  A  U. ( F `  k
)  ->  y  Fn  A )
1816, 17syl 15 . . . . . 6  |-  ( ( ( A  e.  V  /\  F : A --> Haus )  /\  ( x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  ->  y  Fn  A )
19 eqfnfv 5622 . . . . . 6  |-  ( ( x  Fn  A  /\  y  Fn  A )  ->  ( x  =  y  <->  A. k  e.  A  ( x `  k
)  =  ( y `
 k ) ) )
2014, 18, 19syl2anc 642 . . . . 5  |-  ( ( ( A  e.  V  /\  F : A --> Haus )  /\  ( x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  ->  (
x  =  y  <->  A. k  e.  A  ( x `  k )  =  ( y `  k ) ) )
2120necon3abid 2479 . . . 4  |-  ( ( ( A  e.  V  /\  F : A --> Haus )  /\  ( x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  ->  (
x  =/=  y  <->  -.  A. k  e.  A  ( x `  k )  =  ( y `  k ) ) )
22 rexnal 2554 . . . . 5  |-  ( E. k  e.  A  -.  ( x `  k
)  =  ( y `
 k )  <->  -.  A. k  e.  A  ( x `  k )  =  ( y `  k ) )
23 df-ne 2448 . . . . . . 7  |-  ( ( x `  k )  =/=  ( y `  k )  <->  -.  (
x `  k )  =  ( y `  k ) )
24 simpllr 735 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  V  /\  F : A
--> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  ->  F : A --> Haus )
25 simprl 732 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  V  /\  F : A
--> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  -> 
k  e.  A )
26 ffvelrn 5663 . . . . . . . . . . 11  |-  ( ( F : A --> Haus  /\  k  e.  A )  ->  ( F `  k )  e.  Haus )
2724, 25, 26syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  F : A
--> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  -> 
( F `  k
)  e.  Haus )
28 vex 2791 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
2928elixp 6823 . . . . . . . . . . . . . 14  |-  ( x  e.  X_ k  e.  A  U. ( F `  k
)  <->  ( x  Fn  A  /\  A. k  e.  A  ( x `  k )  e.  U. ( F `  k ) ) )
3029simprbi 450 . . . . . . . . . . . . 13  |-  ( x  e.  X_ k  e.  A  U. ( F `  k
)  ->  A. k  e.  A  ( x `  k )  e.  U. ( F `  k ) )
3112, 30syl 15 . . . . . . . . . . . 12  |-  ( ( ( A  e.  V  /\  F : A --> Haus )  /\  ( x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  ->  A. k  e.  A  ( x `  k )  e.  U. ( F `  k ) )
3231r19.21bi 2641 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  V  /\  F : A
--> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  k  e.  A )  ->  (
x `  k )  e.  U. ( F `  k ) )
3332adantrr 697 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  F : A
--> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  -> 
( x `  k
)  e.  U. ( F `  k )
)
34 vex 2791 . . . . . . . . . . . . . . 15  |-  y  e. 
_V
3534elixp 6823 . . . . . . . . . . . . . 14  |-  ( y  e.  X_ k  e.  A  U. ( F `  k
)  <->  ( y  Fn  A  /\  A. k  e.  A  ( y `  k )  e.  U. ( F `  k ) ) )
3635simprbi 450 . . . . . . . . . . . . 13  |-  ( y  e.  X_ k  e.  A  U. ( F `  k
)  ->  A. k  e.  A  ( y `  k )  e.  U. ( F `  k ) )
3716, 36syl 15 . . . . . . . . . . . 12  |-  ( ( ( A  e.  V  /\  F : A --> Haus )  /\  ( x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  ->  A. k  e.  A  ( y `  k )  e.  U. ( F `  k ) )
3837r19.21bi 2641 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  V  /\  F : A
--> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  k  e.  A )  ->  (
y `  k )  e.  U. ( F `  k ) )
3938adantrr 697 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  F : A
--> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  -> 
( y `  k
)  e.  U. ( F `  k )
)
40 simprr 733 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  F : A
--> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  -> 
( x `  k
)  =/=  ( y `
 k ) )
41 eqid 2283 . . . . . . . . . . 11  |-  U. ( F `  k )  =  U. ( F `  k )
4241hausnei 17056 . . . . . . . . . 10  |-  ( ( ( F `  k
)  e.  Haus  /\  (
( x `  k
)  e.  U. ( F `  k )  /\  ( y `  k
)  e.  U. ( F `  k )  /\  ( x `  k
)  =/=  ( y `
 k ) ) )  ->  E. m  e.  ( F `  k
) E. n  e.  ( F `  k
) ( ( x `
 k )  e.  m  /\  ( y `
 k )  e.  n  /\  ( m  i^i  n )  =  (/) ) )
4327, 33, 39, 40, 42syl13anc 1184 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  F : A
--> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  ->  E. m  e.  ( F `  k ) E. n  e.  ( F `  k )
( ( x `  k )  e.  m  /\  ( y `  k
)  e.  n  /\  ( m  i^i  n
)  =  (/) ) )
44 simpll 730 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  V  /\  F : A --> Haus )  /\  ( x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  ->  A  e.  V )
4544ad2antrr 706 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  A  e.  V
)
464ad2antlr 707 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  V  /\  F : A --> Haus )  /\  ( x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  ->  F : A --> Top )
4746ad2antrr 706 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  F : A --> Top )
4825adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  k  e.  A
)
49 eqid 2283 . . . . . . . . . . . . . . 15  |-  U. ( Xt_ `  F )  = 
U. ( Xt_ `  F
)
5049, 8ptpjcn 17305 . . . . . . . . . . . . . 14  |-  ( ( A  e.  V  /\  F : A --> Top  /\  k  e.  A )  ->  ( z  e.  U. ( Xt_ `  F ) 
|->  ( z `  k
) )  e.  ( ( Xt_ `  F
)  Cn  ( F `
 k ) ) )
5145, 47, 48, 50syl3anc 1182 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  ( z  e. 
U. ( Xt_ `  F
)  |->  ( z `  k ) )  e.  ( ( Xt_ `  F
)  Cn  ( F `
 k ) ) )
52 simprll 738 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  m  e.  ( F `  k ) )
53 eqid 2283 . . . . . . . . . . . . . . 15  |-  ( z  e.  U. ( Xt_ `  F )  |->  ( z `
 k ) )  =  ( z  e. 
U. ( Xt_ `  F
)  |->  ( z `  k ) )
5453mptpreima 5166 . . . . . . . . . . . . . 14  |-  ( `' ( z  e.  U. ( Xt_ `  F ) 
|->  ( z `  k
) ) " m
)  =  { z  e.  U. ( Xt_ `  F )  |  ( z `  k )  e.  m }
55 cnima 16994 . . . . . . . . . . . . . 14  |-  ( ( ( z  e.  U. ( Xt_ `  F ) 
|->  ( z `  k
) )  e.  ( ( Xt_ `  F
)  Cn  ( F `
 k ) )  /\  m  e.  ( F `  k ) )  ->  ( `' ( z  e.  U. ( Xt_ `  F ) 
|->  ( z `  k
) ) " m
)  e.  ( Xt_ `  F ) )
5654, 55syl5eqelr 2368 . . . . . . . . . . . . 13  |-  ( ( ( z  e.  U. ( Xt_ `  F ) 
|->  ( z `  k
) )  e.  ( ( Xt_ `  F
)  Cn  ( F `
 k ) )  /\  m  e.  ( F `  k ) )  ->  { z  e.  U. ( Xt_ `  F
)  |  ( z `
 k )  e.  m }  e.  (
Xt_ `  F )
)
5751, 52, 56syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  { z  e. 
U. ( Xt_ `  F
)  |  ( z `
 k )  e.  m }  e.  (
Xt_ `  F )
)
58 simprlr 739 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  n  e.  ( F `  k ) )
5953mptpreima 5166 . . . . . . . . . . . . . 14  |-  ( `' ( z  e.  U. ( Xt_ `  F ) 
|->  ( z `  k
) ) " n
)  =  { z  e.  U. ( Xt_ `  F )  |  ( z `  k )  e.  n }
60 cnima 16994 . . . . . . . . . . . . . 14  |-  ( ( ( z  e.  U. ( Xt_ `  F ) 
|->  ( z `  k
) )  e.  ( ( Xt_ `  F
)  Cn  ( F `
 k ) )  /\  n  e.  ( F `  k ) )  ->  ( `' ( z  e.  U. ( Xt_ `  F ) 
|->  ( z `  k
) ) " n
)  e.  ( Xt_ `  F ) )
6159, 60syl5eqelr 2368 . . . . . . . . . . . . 13  |-  ( ( ( z  e.  U. ( Xt_ `  F ) 
|->  ( z `  k
) )  e.  ( ( Xt_ `  F
)  Cn  ( F `
 k ) )  /\  n  e.  ( F `  k ) )  ->  { z  e.  U. ( Xt_ `  F
)  |  ( z `
 k )  e.  n }  e.  (
Xt_ `  F )
)
6251, 58, 61syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  { z  e. 
U. ( Xt_ `  F
)  |  ( z `
 k )  e.  n }  e.  (
Xt_ `  F )
)
637ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  x  e.  U. ( Xt_ `  F ) )
64 simprr1 1003 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  ( x `  k )  e.  m
)
65 fveq1 5524 . . . . . . . . . . . . . . 15  |-  ( z  =  x  ->  (
z `  k )  =  ( x `  k ) )
6665eleq1d 2349 . . . . . . . . . . . . . 14  |-  ( z  =  x  ->  (
( z `  k
)  e.  m  <->  ( x `  k )  e.  m
) )
6766elrab 2923 . . . . . . . . . . . . 13  |-  ( x  e.  { z  e. 
U. ( Xt_ `  F
)  |  ( z `
 k )  e.  m }  <->  ( x  e.  U. ( Xt_ `  F
)  /\  ( x `  k )  e.  m
) )
6863, 64, 67sylanbrc 645 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  x  e.  {
z  e.  U. ( Xt_ `  F )  |  ( z `  k
)  e.  m }
)
6915ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  y  e.  U. ( Xt_ `  F ) )
70 simprr2 1004 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  ( y `  k )  e.  n
)
71 fveq1 5524 . . . . . . . . . . . . . . 15  |-  ( z  =  y  ->  (
z `  k )  =  ( y `  k ) )
7271eleq1d 2349 . . . . . . . . . . . . . 14  |-  ( z  =  y  ->  (
( z `  k
)  e.  n  <->  ( y `  k )  e.  n
) )
7372elrab 2923 . . . . . . . . . . . . 13  |-  ( y  e.  { z  e. 
U. ( Xt_ `  F
)  |  ( z `
 k )  e.  n }  <->  ( y  e.  U. ( Xt_ `  F
)  /\  ( y `  k )  e.  n
) )
7469, 70, 73sylanbrc 645 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  y  e.  {
z  e.  U. ( Xt_ `  F )  |  ( z `  k
)  e.  n }
)
75 inrab 3440 . . . . . . . . . . . . 13  |-  ( { z  e.  U. ( Xt_ `  F )  |  ( z `  k
)  e.  m }  i^i  { z  e.  U. ( Xt_ `  F )  |  ( z `  k )  e.  n } )  =  {
z  e.  U. ( Xt_ `  F )  |  ( ( z `  k )  e.  m  /\  ( z `  k
)  e.  n ) }
76 simprr3 1005 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  ( m  i^i  n )  =  (/) )
77 inelcm 3509 . . . . . . . . . . . . . . . . 17  |-  ( ( ( z `  k
)  e.  m  /\  ( z `  k
)  e.  n )  ->  ( m  i^i  n )  =/=  (/) )
7877necon2bi 2492 . . . . . . . . . . . . . . . 16  |-  ( ( m  i^i  n )  =  (/)  ->  -.  (
( z `  k
)  e.  m  /\  ( z `  k
)  e.  n ) )
7976, 78syl 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  -.  ( (
z `  k )  e.  m  /\  (
z `  k )  e.  n ) )
8079ralrimivw 2627 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  A. z  e.  U. ( Xt_ `  F )  -.  ( ( z `
 k )  e.  m  /\  ( z `
 k )  e.  n ) )
81 rabeq0 3476 . . . . . . . . . . . . . 14  |-  ( { z  e.  U. ( Xt_ `  F )  |  ( ( z `  k )  e.  m  /\  ( z `  k
)  e.  n ) }  =  (/)  <->  A. z  e.  U. ( Xt_ `  F
)  -.  ( ( z `  k )  e.  m  /\  (
z `  k )  e.  n ) )
8280, 81sylibr 203 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  { z  e. 
U. ( Xt_ `  F
)  |  ( ( z `  k )  e.  m  /\  (
z `  k )  e.  n ) }  =  (/) )
8375, 82syl5eq 2327 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  ( { z  e.  U. ( Xt_ `  F )  |  ( z `  k )  e.  m }  i^i  { z  e.  U. ( Xt_ `  F )  |  ( z `  k
)  e.  n }
)  =  (/) )
84 eleq2 2344 . . . . . . . . . . . . . 14  |-  ( u  =  { z  e. 
U. ( Xt_ `  F
)  |  ( z `
 k )  e.  m }  ->  (
x  e.  u  <->  x  e.  { z  e.  U. ( Xt_ `  F )  |  ( z `  k
)  e.  m }
) )
85 ineq1 3363 . . . . . . . . . . . . . . 15  |-  ( u  =  { z  e. 
U. ( Xt_ `  F
)  |  ( z `
 k )  e.  m }  ->  (
u  i^i  v )  =  ( { z  e.  U. ( Xt_ `  F )  |  ( z `  k )  e.  m }  i^i  v ) )
8685eqeq1d 2291 . . . . . . . . . . . . . 14  |-  ( u  =  { z  e. 
U. ( Xt_ `  F
)  |  ( z `
 k )  e.  m }  ->  (
( u  i^i  v
)  =  (/)  <->  ( {
z  e.  U. ( Xt_ `  F )  |  ( z `  k
)  e.  m }  i^i  v )  =  (/) ) )
8784, 863anbi13d 1254 . . . . . . . . . . . . 13  |-  ( u  =  { z  e. 
U. ( Xt_ `  F
)  |  ( z `
 k )  e.  m }  ->  (
( x  e.  u  /\  y  e.  v  /\  ( u  i^i  v
)  =  (/) )  <->  ( x  e.  { z  e.  U. ( Xt_ `  F )  |  ( z `  k )  e.  m }  /\  y  e.  v  /\  ( { z  e.  U. ( Xt_ `  F )  |  ( z `  k )  e.  m }  i^i  v )  =  (/) ) ) )
88 eleq2 2344 . . . . . . . . . . . . . 14  |-  ( v  =  { z  e. 
U. ( Xt_ `  F
)  |  ( z `
 k )  e.  n }  ->  (
y  e.  v  <->  y  e.  { z  e.  U. ( Xt_ `  F )  |  ( z `  k
)  e.  n }
) )
89 ineq2 3364 . . . . . . . . . . . . . . 15  |-  ( v  =  { z  e. 
U. ( Xt_ `  F
)  |  ( z `
 k )  e.  n }  ->  ( { z  e.  U. ( Xt_ `  F )  |  ( z `  k )  e.  m }  i^i  v )  =  ( { z  e. 
U. ( Xt_ `  F
)  |  ( z `
 k )  e.  m }  i^i  {
z  e.  U. ( Xt_ `  F )  |  ( z `  k
)  e.  n }
) )
9089eqeq1d 2291 . . . . . . . . . . . . . 14  |-  ( v  =  { z  e. 
U. ( Xt_ `  F
)  |  ( z `
 k )  e.  n }  ->  (
( { z  e. 
U. ( Xt_ `  F
)  |  ( z `
 k )  e.  m }  i^i  v
)  =  (/)  <->  ( {
z  e.  U. ( Xt_ `  F )  |  ( z `  k
)  e.  m }  i^i  { z  e.  U. ( Xt_ `  F )  |  ( z `  k )  e.  n } )  =  (/) ) )
9188, 903anbi23d 1255 . . . . . . . . . . . . 13  |-  ( v  =  { z  e. 
U. ( Xt_ `  F
)  |  ( z `
 k )  e.  n }  ->  (
( x  e.  {
z  e.  U. ( Xt_ `  F )  |  ( z `  k
)  e.  m }  /\  y  e.  v  /\  ( { z  e. 
U. ( Xt_ `  F
)  |  ( z `
 k )  e.  m }  i^i  v
)  =  (/) )  <->  ( x  e.  { z  e.  U. ( Xt_ `  F )  |  ( z `  k )  e.  m }  /\  y  e.  {
z  e.  U. ( Xt_ `  F )  |  ( z `  k
)  e.  n }  /\  ( { z  e. 
U. ( Xt_ `  F
)  |  ( z `
 k )  e.  m }  i^i  {
z  e.  U. ( Xt_ `  F )  |  ( z `  k
)  e.  n }
)  =  (/) ) ) )
9287, 91rspc2ev 2892 . . . . . . . . . . . 12  |-  ( ( { z  e.  U. ( Xt_ `  F )  |  ( z `  k )  e.  m }  e.  ( Xt_ `  F )  /\  {
z  e.  U. ( Xt_ `  F )  |  ( z `  k
)  e.  n }  e.  ( Xt_ `  F
)  /\  ( x  e.  { z  e.  U. ( Xt_ `  F )  |  ( z `  k )  e.  m }  /\  y  e.  {
z  e.  U. ( Xt_ `  F )  |  ( z `  k
)  e.  n }  /\  ( { z  e. 
U. ( Xt_ `  F
)  |  ( z `
 k )  e.  m }  i^i  {
z  e.  U. ( Xt_ `  F )  |  ( z `  k
)  e.  n }
)  =  (/) ) )  ->  E. u  e.  (
Xt_ `  F ) E. v  e.  ( Xt_ `  F ) ( x  e.  u  /\  y  e.  v  /\  ( u  i^i  v
)  =  (/) ) )
9357, 62, 68, 74, 83, 92syl113anc 1194 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( ( m  e.  ( F `  k
)  /\  n  e.  ( F `  k ) )  /\  ( ( x `  k )  e.  m  /\  (
y `  k )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  E. u  e.  (
Xt_ `  F ) E. v  e.  ( Xt_ `  F ) ( x  e.  u  /\  y  e.  v  /\  ( u  i^i  v
)  =  (/) ) )
9493expr 598 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  /\  ( m  e.  ( F `  k )  /\  n  e.  ( F `  k )
) )  ->  (
( ( x `  k )  e.  m  /\  ( y `  k
)  e.  n  /\  ( m  i^i  n
)  =  (/) )  ->  E. u  e.  ( Xt_ `  F ) E. v  e.  ( Xt_ `  F ) ( x  e.  u  /\  y  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )
9594rexlimdvva 2674 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  F : A
--> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  -> 
( E. m  e.  ( F `  k
) E. n  e.  ( F `  k
) ( ( x `
 k )  e.  m  /\  ( y `
 k )  e.  n  /\  ( m  i^i  n )  =  (/) )  ->  E. u  e.  ( Xt_ `  F
) E. v  e.  ( Xt_ `  F
) ( x  e.  u  /\  y  e.  v  /\  ( u  i^i  v )  =  (/) ) ) )
9643, 95mpd 14 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  F : A
--> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  ( k  e.  A  /\  (
x `  k )  =/=  ( y `  k
) ) )  ->  E. u  e.  ( Xt_ `  F ) E. v  e.  ( Xt_ `  F ) ( x  e.  u  /\  y  e.  v  /\  (
u  i^i  v )  =  (/) ) )
9796expr 598 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  F : A
--> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  k  e.  A )  ->  (
( x `  k
)  =/=  ( y `
 k )  ->  E. u  e.  ( Xt_ `  F ) E. v  e.  ( Xt_ `  F ) ( x  e.  u  /\  y  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )
9823, 97syl5bir 209 . . . . . 6  |-  ( ( ( ( A  e.  V  /\  F : A
--> Haus )  /\  (
x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  /\  k  e.  A )  ->  ( -.  ( x `  k
)  =  ( y `
 k )  ->  E. u  e.  ( Xt_ `  F ) E. v  e.  ( Xt_ `  F ) ( x  e.  u  /\  y  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )
9998rexlimdva 2667 . . . . 5  |-  ( ( ( A  e.  V  /\  F : A --> Haus )  /\  ( x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  ->  ( E. k  e.  A  -.  ( x `  k
)  =  ( y `
 k )  ->  E. u  e.  ( Xt_ `  F ) E. v  e.  ( Xt_ `  F ) ( x  e.  u  /\  y  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )
10022, 99syl5bir 209 . . . 4  |-  ( ( ( A  e.  V  /\  F : A --> Haus )  /\  ( x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  ->  ( -.  A. k  e.  A  ( x `  k
)  =  ( y `
 k )  ->  E. u  e.  ( Xt_ `  F ) E. v  e.  ( Xt_ `  F ) ( x  e.  u  /\  y  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )
10121, 100sylbid 206 . . 3  |-  ( ( ( A  e.  V  /\  F : A --> Haus )  /\  ( x  e.  U. ( Xt_ `  F )  /\  y  e.  U. ( Xt_ `  F ) ) )  ->  (
x  =/=  y  ->  E. u  e.  ( Xt_ `  F ) E. v  e.  ( Xt_ `  F ) ( x  e.  u  /\  y  e.  v  /\  (
u  i^i  v )  =  (/) ) ) )
102101ralrimivva 2635 . 2  |-  ( ( A  e.  V  /\  F : A --> Haus )  ->  A. x  e.  U. ( Xt_ `  F ) A. y  e.  U. ( Xt_ `  F ) ( x  =/=  y  ->  E. u  e.  (
Xt_ `  F ) E. v  e.  ( Xt_ `  F ) ( x  e.  u  /\  y  e.  v  /\  ( u  i^i  v
)  =  (/) ) ) )
10349ishaus 17050 . 2  |-  ( (
Xt_ `  F )  e.  Haus  <->  ( ( Xt_ `  F )  e.  Top  /\ 
A. x  e.  U. ( Xt_ `  F ) A. y  e.  U. ( Xt_ `  F ) ( x  =/=  y  ->  E. u  e.  (
Xt_ `  F ) E. v  e.  ( Xt_ `  F ) ( x  e.  u  /\  y  e.  v  /\  ( u  i^i  v
)  =  (/) ) ) ) )
1046, 102, 103sylanbrc 645 1  |-  ( ( A  e.  V  /\  F : A --> Haus )  ->  ( Xt_ `  F
)  e.  Haus )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   {crab 2547    i^i cin 3151    C_ wss 3152   (/)c0 3455   U.cuni 3827    e. cmpt 4077   `'ccnv 4688   "cima 4692    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858   X_cixp 6817   Xt_cpt 13343   Topctop 16631    Cn ccn 16954   Hauscha 17036
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-ixp 6818  df-en 6864  df-fin 6867  df-fi 7165  df-topgen 13344  df-pt 13345  df-top 16636  df-bases 16638  df-topon 16639  df-cn 16957  df-haus 17043
  Copyright terms: Public domain W3C validator