MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptpjopn Structured version   Unicode version

Theorem ptpjopn 17636
Description: The projection map is an open map. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
ptpjcn.1  |-  Y  = 
U. J
ptpjcn.2  |-  J  =  ( Xt_ `  F
)
Assertion
Ref Expression
ptpjopn  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J
)  ->  ( (
x  e.  Y  |->  ( x `  I ) ) " U )  e.  ( F `  I ) )
Distinct variable groups:    x, A    x, F    x, I    x, V    x, Y    x, U
Allowed substitution hint:    J( x)

Proof of Theorem ptpjopn
Dummy variables  g 
k  n  s  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ima 4883 . . 3  |-  ( ( x  e.  Y  |->  ( x `  I ) ) " U )  =  ran  ( ( x  e.  Y  |->  ( x `  I ) )  |`  U )
2 elssuni 4035 . . . . . . 7  |-  ( U  e.  J  ->  U  C_ 
U. J )
3 ptpjcn.1 . . . . . . 7  |-  Y  = 
U. J
42, 3syl6sseqr 3387 . . . . . 6  |-  ( U  e.  J  ->  U  C_  Y )
54adantl 453 . . . . 5  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J
)  ->  U  C_  Y
)
6 resmpt 5183 . . . . 5  |-  ( U 
C_  Y  ->  (
( x  e.  Y  |->  ( x `  I
) )  |`  U )  =  ( x  e.  U  |->  ( x `  I ) ) )
75, 6syl 16 . . . 4  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J
)  ->  ( (
x  e.  Y  |->  ( x `  I ) )  |`  U )  =  ( x  e.  U  |->  ( x `  I ) ) )
87rneqd 5089 . . 3  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J
)  ->  ran  ( ( x  e.  Y  |->  ( x `  I ) )  |`  U )  =  ran  ( x  e.  U  |->  ( x `  I ) ) )
91, 8syl5eq 2479 . 2  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J
)  ->  ( (
x  e.  Y  |->  ( x `  I ) ) " U )  =  ran  ( x  e.  U  |->  ( x `
 I ) ) )
10 ptpjcn.2 . . . . . . . . . . 11  |-  J  =  ( Xt_ `  F
)
11 ffn 5583 . . . . . . . . . . . 12  |-  ( F : A --> Top  ->  F  Fn  A )
12 eqid 2435 . . . . . . . . . . . . 13  |-  { s  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  ( g `  y
)  e.  ( F `
 y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z ) ( g `
 y )  = 
U. ( F `  y ) )  /\  s  =  X_ y  e.  A  ( g `  y ) ) }  =  { s  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  s  = 
X_ y  e.  A  ( g `  y
) ) }
1312ptval 17594 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  F  Fn  A )  ->  ( Xt_ `  F
)  =  ( topGen `  { s  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  s  = 
X_ y  e.  A  ( g `  y
) ) } ) )
1411, 13sylan2 461 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  ( Xt_ `  F
)  =  ( topGen `  { s  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  s  = 
X_ y  e.  A  ( g `  y
) ) } ) )
1510, 14syl5eq 2479 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  J  =  ( topGen `  { s  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  s  = 
X_ y  e.  A  ( g `  y
) ) } ) )
16153adant3 977 . . . . . . . . 9  |-  ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  ->  J  =  ( topGen `  { s  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  s  = 
X_ y  e.  A  ( g `  y
) ) } ) )
1716eleq2d 2502 . . . . . . . 8  |-  ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  ->  ( U  e.  J  <->  U  e.  ( topGen `  {
s  |  E. g
( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e. 
Fin  A. y  e.  ( A  \  z ) ( g `  y
)  =  U. ( F `  y )
)  /\  s  =  X_ y  e.  A  ( g `  y ) ) } ) ) )
1817biimpa 471 . . . . . . 7  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J
)  ->  U  e.  ( topGen `  { s  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  s  = 
X_ y  e.  A  ( g `  y
) ) } ) )
19 tg2 17022 . . . . . . 7  |-  ( ( U  e.  ( topGen `  { s  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  s  = 
X_ y  e.  A  ( g `  y
) ) } )  /\  s  e.  U
)  ->  E. w  e.  { s  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  s  = 
X_ y  e.  A  ( g `  y
) ) }  (
s  e.  w  /\  w  C_  U ) )
2018, 19sylan 458 . . . . . 6  |-  ( ( ( ( A  e.  V  /\  F : A
--> Top  /\  I  e.  A )  /\  U  e.  J )  /\  s  e.  U )  ->  E. w  e.  { s  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  s  = 
X_ y  e.  A  ( g `  y
) ) }  (
s  e.  w  /\  w  C_  U ) )
21 vex 2951 . . . . . . . . 9  |-  w  e. 
_V
22 eqeq1 2441 . . . . . . . . . . 11  |-  ( s  =  w  ->  (
s  =  X_ y  e.  A  ( g `  y )  <->  w  =  X_ y  e.  A  ( g `  y ) ) )
2322anbi2d 685 . . . . . . . . . 10  |-  ( s  =  w  ->  (
( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e. 
Fin  A. y  e.  ( A  \  z ) ( g `  y
)  =  U. ( F `  y )
)  /\  s  =  X_ y  e.  A  ( g `  y ) )  <->  ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  w  = 
X_ y  e.  A  ( g `  y
) ) ) )
2423exbidv 1636 . . . . . . . . 9  |-  ( s  =  w  ->  ( E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  s  = 
X_ y  e.  A  ( g `  y
) )  <->  E. g
( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e. 
Fin  A. y  e.  ( A  \  z ) ( g `  y
)  =  U. ( F `  y )
)  /\  w  =  X_ y  e.  A  ( g `  y ) ) ) )
2521, 24elab 3074 . . . . . . . 8  |-  ( w  e.  { s  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  s  = 
X_ y  e.  A  ( g `  y
) ) }  <->  E. g
( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e. 
Fin  A. y  e.  ( A  \  z ) ( g `  y
)  =  U. ( F `  y )
)  /\  w  =  X_ y  e.  A  ( g `  y ) ) )
26 simpl3 962 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J
)  ->  I  e.  A )
2726ad3antrrr 711 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J
)  /\  s  e.  U )  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) ) )  /\  (
s  e.  X_ y  e.  A  ( g `  y )  /\  X_ y  e.  A  ( g `  y )  C_  U
) )  ->  I  e.  A )
28 simplr2 1000 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J
)  /\  s  e.  U )  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) ) )  /\  (
s  e.  X_ y  e.  A  ( g `  y )  /\  X_ y  e.  A  ( g `  y )  C_  U
) )  ->  A. y  e.  A  ( g `  y )  e.  ( F `  y ) )
29 fveq2 5720 . . . . . . . . . . . . . . . 16  |-  ( y  =  I  ->  (
g `  y )  =  ( g `  I ) )
30 fveq2 5720 . . . . . . . . . . . . . . . 16  |-  ( y  =  I  ->  ( F `  y )  =  ( F `  I ) )
3129, 30eleq12d 2503 . . . . . . . . . . . . . . 15  |-  ( y  =  I  ->  (
( g `  y
)  e.  ( F `
 y )  <->  ( g `  I )  e.  ( F `  I ) ) )
3231rspcv 3040 . . . . . . . . . . . . . 14  |-  ( I  e.  A  ->  ( A. y  e.  A  ( g `  y
)  e.  ( F `
 y )  -> 
( g `  I
)  e.  ( F `
 I ) ) )
3327, 28, 32sylc 58 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J
)  /\  s  e.  U )  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) ) )  /\  (
s  e.  X_ y  e.  A  ( g `  y )  /\  X_ y  e.  A  ( g `  y )  C_  U
) )  ->  (
g `  I )  e.  ( F `  I
) )
34 vex 2951 . . . . . . . . . . . . . . . . 17  |-  s  e. 
_V
3534elixp 7061 . . . . . . . . . . . . . . . 16  |-  ( s  e.  X_ y  e.  A  ( g `  y
)  <->  ( s  Fn  A  /\  A. y  e.  A  ( s `  y )  e.  ( g `  y ) ) )
3635simprbi 451 . . . . . . . . . . . . . . 15  |-  ( s  e.  X_ y  e.  A  ( g `  y
)  ->  A. y  e.  A  ( s `  y )  e.  ( g `  y ) )
3736ad2antrl 709 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J
)  /\  s  e.  U )  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) ) )  /\  (
s  e.  X_ y  e.  A  ( g `  y )  /\  X_ y  e.  A  ( g `  y )  C_  U
) )  ->  A. y  e.  A  ( s `  y )  e.  ( g `  y ) )
38 fveq2 5720 . . . . . . . . . . . . . . . 16  |-  ( y  =  I  ->  (
s `  y )  =  ( s `  I ) )
3938, 29eleq12d 2503 . . . . . . . . . . . . . . 15  |-  ( y  =  I  ->  (
( s `  y
)  e.  ( g `
 y )  <->  ( s `  I )  e.  ( g `  I ) ) )
4039rspcv 3040 . . . . . . . . . . . . . 14  |-  ( I  e.  A  ->  ( A. y  e.  A  ( s `  y
)  e.  ( g `
 y )  -> 
( s `  I
)  e.  ( g `
 I ) ) )
4127, 37, 40sylc 58 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J
)  /\  s  e.  U )  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) ) )  /\  (
s  e.  X_ y  e.  A  ( g `  y )  /\  X_ y  e.  A  ( g `  y )  C_  U
) )  ->  (
s `  I )  e.  ( g `  I
) )
42 simplrr 738 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J
)  /\  s  e.  U )  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) ) )  /\  (
s  e.  X_ y  e.  A  ( g `  y )  /\  X_ y  e.  A  ( g `  y )  C_  U
) )  /\  k  e.  ( g `  I
) )  ->  X_ y  e.  A  ( g `  y )  C_  U
)
43 simplrl 737 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( ( ( A  e.  V  /\  F : A
--> Top  /\  I  e.  A )  /\  U  e.  J )  /\  s  e.  U )  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) ) )  /\  (
s  e.  X_ y  e.  A  ( g `  y )  /\  X_ y  e.  A  ( g `  y )  C_  U
) )  /\  (
k  e.  ( g `
 I )  /\  n  e.  A )
)  /\  n  =  I )  ->  k  e.  ( g `  I
) )
44 fveq2 5720 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( n  =  I  ->  (
g `  n )  =  ( g `  I ) )
4544adantl 453 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( ( ( A  e.  V  /\  F : A
--> Top  /\  I  e.  A )  /\  U  e.  J )  /\  s  e.  U )  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) ) )  /\  (
s  e.  X_ y  e.  A  ( g `  y )  /\  X_ y  e.  A  ( g `  y )  C_  U
) )  /\  (
k  e.  ( g `
 I )  /\  n  e.  A )
)  /\  n  =  I )  ->  (
g `  n )  =  ( g `  I ) )
4643, 45eleqtrrd 2512 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( ( ( A  e.  V  /\  F : A
--> Top  /\  I  e.  A )  /\  U  e.  J )  /\  s  e.  U )  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) ) )  /\  (
s  e.  X_ y  e.  A  ( g `  y )  /\  X_ y  e.  A  ( g `  y )  C_  U
) )  /\  (
k  e.  ( g `
 I )  /\  n  e.  A )
)  /\  n  =  I )  ->  k  e.  ( g `  n
) )
47 simprr 734 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J
)  /\  s  e.  U )  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) ) )  /\  (
s  e.  X_ y  e.  A  ( g `  y )  /\  X_ y  e.  A  ( g `  y )  C_  U
) )  /\  (
k  e.  ( g `
 I )  /\  n  e.  A )
)  ->  n  e.  A )
48 simplrl 737 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J
)  /\  s  e.  U )  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) ) )  /\  (
s  e.  X_ y  e.  A  ( g `  y )  /\  X_ y  e.  A  ( g `  y )  C_  U
) )  /\  (
k  e.  ( g `
 I )  /\  n  e.  A )
)  ->  s  e.  X_ y  e.  A  ( g `  y ) )
4948, 36syl 16 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J
)  /\  s  e.  U )  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) ) )  /\  (
s  e.  X_ y  e.  A  ( g `  y )  /\  X_ y  e.  A  ( g `  y )  C_  U
) )  /\  (
k  e.  ( g `
 I )  /\  n  e.  A )
)  ->  A. y  e.  A  ( s `  y )  e.  ( g `  y ) )
50 fveq2 5720 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( y  =  n  ->  (
s `  y )  =  ( s `  n ) )
51 fveq2 5720 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( y  =  n  ->  (
g `  y )  =  ( g `  n ) )
5250, 51eleq12d 2503 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( y  =  n  ->  (
( s `  y
)  e.  ( g `
 y )  <->  ( s `  n )  e.  ( g `  n ) ) )
5352rspcv 3040 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( n  e.  A  ->  ( A. y  e.  A  ( s `  y
)  e.  ( g `
 y )  -> 
( s `  n
)  e.  ( g `
 n ) ) )
5447, 49, 53sylc 58 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J
)  /\  s  e.  U )  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) ) )  /\  (
s  e.  X_ y  e.  A  ( g `  y )  /\  X_ y  e.  A  ( g `  y )  C_  U
) )  /\  (
k  e.  ( g `
 I )  /\  n  e.  A )
)  ->  ( s `  n )  e.  ( g `  n ) )
5554adantr 452 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( ( ( A  e.  V  /\  F : A
--> Top  /\  I  e.  A )  /\  U  e.  J )  /\  s  e.  U )  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) ) )  /\  (
s  e.  X_ y  e.  A  ( g `  y )  /\  X_ y  e.  A  ( g `  y )  C_  U
) )  /\  (
k  e.  ( g `
 I )  /\  n  e.  A )
)  /\  -.  n  =  I )  ->  (
s `  n )  e.  ( g `  n
) )
5646, 55ifclda 3758 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J
)  /\  s  e.  U )  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) ) )  /\  (
s  e.  X_ y  e.  A  ( g `  y )  /\  X_ y  e.  A  ( g `  y )  C_  U
) )  /\  (
k  e.  ( g `
 I )  /\  n  e.  A )
)  ->  if (
n  =  I ,  k ,  ( s `
 n ) )  e.  ( g `  n ) )
5756anassrs 630 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( ( ( A  e.  V  /\  F : A
--> Top  /\  I  e.  A )  /\  U  e.  J )  /\  s  e.  U )  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) ) )  /\  (
s  e.  X_ y  e.  A  ( g `  y )  /\  X_ y  e.  A  ( g `  y )  C_  U
) )  /\  k  e.  ( g `  I
) )  /\  n  e.  A )  ->  if ( n  =  I ,  k ,  ( s `  n ) )  e.  ( g `
 n ) )
5857ralrimiva 2781 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J
)  /\  s  e.  U )  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) ) )  /\  (
s  e.  X_ y  e.  A  ( g `  y )  /\  X_ y  e.  A  ( g `  y )  C_  U
) )  /\  k  e.  ( g `  I
) )  ->  A. n  e.  A  if (
n  =  I ,  k ,  ( s `
 n ) )  e.  ( g `  n ) )
59 simpll1 996 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  e.  V  /\  F : A
--> Top  /\  I  e.  A )  /\  U  e.  J )  /\  s  e.  U )  ->  A  e.  V )
6059ad3antrrr 711 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J
)  /\  s  e.  U )  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) ) )  /\  (
s  e.  X_ y  e.  A  ( g `  y )  /\  X_ y  e.  A  ( g `  y )  C_  U
) )  /\  k  e.  ( g `  I
) )  ->  A  e.  V )
61 mptelixpg 7091 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A  e.  V  ->  (
( n  e.  A  |->  if ( n  =  I ,  k ,  ( s `  n
) ) )  e.  X_ n  e.  A  ( g `  n
)  <->  A. n  e.  A  if ( n  =  I ,  k ,  ( s `  n ) )  e.  ( g `
 n ) ) )
6260, 61syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J
)  /\  s  e.  U )  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) ) )  /\  (
s  e.  X_ y  e.  A  ( g `  y )  /\  X_ y  e.  A  ( g `  y )  C_  U
) )  /\  k  e.  ( g `  I
) )  ->  (
( n  e.  A  |->  if ( n  =  I ,  k ,  ( s `  n
) ) )  e.  X_ n  e.  A  ( g `  n
)  <->  A. n  e.  A  if ( n  =  I ,  k ,  ( s `  n ) )  e.  ( g `
 n ) ) )
6358, 62mpbird 224 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J
)  /\  s  e.  U )  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) ) )  /\  (
s  e.  X_ y  e.  A  ( g `  y )  /\  X_ y  e.  A  ( g `  y )  C_  U
) )  /\  k  e.  ( g `  I
) )  ->  (
n  e.  A  |->  if ( n  =  I ,  k ,  ( s `  n ) ) )  e.  X_ n  e.  A  (
g `  n )
)
64 fveq2 5720 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  =  y  ->  (
g `  n )  =  ( g `  y ) )
6564cbvixpv 7072 . . . . . . . . . . . . . . . . . . 19  |-  X_ n  e.  A  ( g `  n )  =  X_ y  e.  A  (
g `  y )
6663, 65syl6eleq 2525 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J
)  /\  s  e.  U )  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) ) )  /\  (
s  e.  X_ y  e.  A  ( g `  y )  /\  X_ y  e.  A  ( g `  y )  C_  U
) )  /\  k  e.  ( g `  I
) )  ->  (
n  e.  A  |->  if ( n  =  I ,  k ,  ( s `  n ) ) )  e.  X_ y  e.  A  (
g `  y )
)
6742, 66sseldd 3341 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J
)  /\  s  e.  U )  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) ) )  /\  (
s  e.  X_ y  e.  A  ( g `  y )  /\  X_ y  e.  A  ( g `  y )  C_  U
) )  /\  k  e.  ( g `  I
) )  ->  (
n  e.  A  |->  if ( n  =  I ,  k ,  ( s `  n ) ) )  e.  U
)
6827adantr 452 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J
)  /\  s  e.  U )  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) ) )  /\  (
s  e.  X_ y  e.  A  ( g `  y )  /\  X_ y  e.  A  ( g `  y )  C_  U
) )  /\  k  e.  ( g `  I
) )  ->  I  e.  A )
69 iftrue 3737 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  =  I  ->  if ( n  =  I ,  k ,  ( s `  n ) )  =  k )
70 eqid 2435 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  e.  A  |->  if ( n  =  I ,  k ,  ( s `
 n ) ) )  =  ( n  e.  A  |->  if ( n  =  I ,  k ,  ( s `
 n ) ) )
71 vex 2951 . . . . . . . . . . . . . . . . . . . 20  |-  k  e. 
_V
7269, 70, 71fvmpt 5798 . . . . . . . . . . . . . . . . . . 19  |-  ( I  e.  A  ->  (
( n  e.  A  |->  if ( n  =  I ,  k ,  ( s `  n
) ) ) `  I )  =  k )
7368, 72syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J
)  /\  s  e.  U )  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) ) )  /\  (
s  e.  X_ y  e.  A  ( g `  y )  /\  X_ y  e.  A  ( g `  y )  C_  U
) )  /\  k  e.  ( g `  I
) )  ->  (
( n  e.  A  |->  if ( n  =  I ,  k ,  ( s `  n
) ) ) `  I )  =  k )
7473eqcomd 2440 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J
)  /\  s  e.  U )  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) ) )  /\  (
s  e.  X_ y  e.  A  ( g `  y )  /\  X_ y  e.  A  ( g `  y )  C_  U
) )  /\  k  e.  ( g `  I
) )  ->  k  =  ( ( n  e.  A  |->  if ( n  =  I ,  k ,  ( s `
 n ) ) ) `  I ) )
75 fveq1 5719 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  ( n  e.  A  |->  if ( n  =  I ,  k ,  ( s `  n ) ) )  ->  ( x `  I )  =  ( ( n  e.  A  |->  if ( n  =  I ,  k ,  ( s `  n
) ) ) `  I ) )
7675eqeq2d 2446 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  ( n  e.  A  |->  if ( n  =  I ,  k ,  ( s `  n ) ) )  ->  ( k  =  ( x `  I
)  <->  k  =  ( ( n  e.  A  |->  if ( n  =  I ,  k ,  ( s `  n
) ) ) `  I ) ) )
7776rspcev 3044 . . . . . . . . . . . . . . . . 17  |-  ( ( ( n  e.  A  |->  if ( n  =  I ,  k ,  ( s `  n
) ) )  e.  U  /\  k  =  ( ( n  e.  A  |->  if ( n  =  I ,  k ,  ( s `  n ) ) ) `
 I ) )  ->  E. x  e.  U  k  =  ( x `  I ) )
7867, 74, 77syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J
)  /\  s  e.  U )  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) ) )  /\  (
s  e.  X_ y  e.  A  ( g `  y )  /\  X_ y  e.  A  ( g `  y )  C_  U
) )  /\  k  e.  ( g `  I
) )  ->  E. x  e.  U  k  =  ( x `  I
) )
79 eqid 2435 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  U  |->  ( x `
 I ) )  =  ( x  e.  U  |->  ( x `  I ) )
8079elrnmpt 5109 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  _V  ->  (
k  e.  ran  (
x  e.  U  |->  ( x `  I ) )  <->  E. x  e.  U  k  =  ( x `  I ) ) )
8171, 80ax-mp 8 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ran  ( x  e.  U  |->  ( x `
 I ) )  <->  E. x  e.  U  k  =  ( x `  I ) )
8278, 81sylibr 204 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J
)  /\  s  e.  U )  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) ) )  /\  (
s  e.  X_ y  e.  A  ( g `  y )  /\  X_ y  e.  A  ( g `  y )  C_  U
) )  /\  k  e.  ( g `  I
) )  ->  k  e.  ran  ( x  e.  U  |->  ( x `  I ) ) )
8382ex 424 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J
)  /\  s  e.  U )  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) ) )  /\  (
s  e.  X_ y  e.  A  ( g `  y )  /\  X_ y  e.  A  ( g `  y )  C_  U
) )  ->  (
k  e.  ( g `
 I )  -> 
k  e.  ran  (
x  e.  U  |->  ( x `  I ) ) ) )
8483ssrdv 3346 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J
)  /\  s  e.  U )  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) ) )  /\  (
s  e.  X_ y  e.  A  ( g `  y )  /\  X_ y  e.  A  ( g `  y )  C_  U
) )  ->  (
g `  I )  C_ 
ran  ( x  e.  U  |->  ( x `  I ) ) )
85 eleq2 2496 . . . . . . . . . . . . . . 15  |-  ( z  =  ( g `  I )  ->  (
( s `  I
)  e.  z  <->  ( s `  I )  e.  ( g `  I ) ) )
86 sseq1 3361 . . . . . . . . . . . . . . 15  |-  ( z  =  ( g `  I )  ->  (
z  C_  ran  ( x  e.  U  |->  ( x `
 I ) )  <-> 
( g `  I
)  C_  ran  ( x  e.  U  |->  ( x `
 I ) ) ) )
8785, 86anbi12d 692 . . . . . . . . . . . . . 14  |-  ( z  =  ( g `  I )  ->  (
( ( s `  I )  e.  z  /\  z  C_  ran  ( x  e.  U  |->  ( x `  I
) ) )  <->  ( (
s `  I )  e.  ( g `  I
)  /\  ( g `  I )  C_  ran  ( x  e.  U  |->  ( x `  I
) ) ) ) )
8887rspcev 3044 . . . . . . . . . . . . 13  |-  ( ( ( g `  I
)  e.  ( F `
 I )  /\  ( ( s `  I )  e.  ( g `  I )  /\  ( g `  I )  C_  ran  ( x  e.  U  |->  ( x `  I
) ) ) )  ->  E. z  e.  ( F `  I ) ( ( s `  I )  e.  z  /\  z  C_  ran  ( x  e.  U  |->  ( x `  I
) ) ) )
8933, 41, 84, 88syl12anc 1182 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J
)  /\  s  e.  U )  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) ) )  /\  (
s  e.  X_ y  e.  A  ( g `  y )  /\  X_ y  e.  A  ( g `  y )  C_  U
) )  ->  E. z  e.  ( F `  I
) ( ( s `
 I )  e.  z  /\  z  C_  ran  ( x  e.  U  |->  ( x `  I
) ) ) )
9089ex 424 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J )  /\  s  e.  U )  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) ) )  ->  (
( s  e.  X_ y  e.  A  (
g `  y )  /\  X_ y  e.  A  ( g `  y
)  C_  U )  ->  E. z  e.  ( F `  I ) ( ( s `  I )  e.  z  /\  z  C_  ran  ( x  e.  U  |->  ( x `  I
) ) ) ) )
91 eleq2 2496 . . . . . . . . . . . . 13  |-  ( w  =  X_ y  e.  A  ( g `  y
)  ->  ( s  e.  w  <->  s  e.  X_ y  e.  A  (
g `  y )
) )
92 sseq1 3361 . . . . . . . . . . . . 13  |-  ( w  =  X_ y  e.  A  ( g `  y
)  ->  ( w  C_  U  <->  X_ y  e.  A  ( g `  y
)  C_  U )
)
9391, 92anbi12d 692 . . . . . . . . . . . 12  |-  ( w  =  X_ y  e.  A  ( g `  y
)  ->  ( (
s  e.  w  /\  w  C_  U )  <->  ( s  e.  X_ y  e.  A  ( g `  y
)  /\  X_ y  e.  A  ( g `  y )  C_  U
) ) )
9493imbi1d 309 . . . . . . . . . . 11  |-  ( w  =  X_ y  e.  A  ( g `  y
)  ->  ( (
( s  e.  w  /\  w  C_  U )  ->  E. z  e.  ( F `  I ) ( ( s `  I )  e.  z  /\  z  C_  ran  ( x  e.  U  |->  ( x `  I
) ) ) )  <-> 
( ( s  e.  X_ y  e.  A  ( g `  y
)  /\  X_ y  e.  A  ( g `  y )  C_  U
)  ->  E. z  e.  ( F `  I
) ( ( s `
 I )  e.  z  /\  z  C_  ran  ( x  e.  U  |->  ( x `  I
) ) ) ) ) )
9590, 94syl5ibrcom 214 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J )  /\  s  e.  U )  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) ) )  ->  (
w  =  X_ y  e.  A  ( g `  y )  ->  (
( s  e.  w  /\  w  C_  U )  ->  E. z  e.  ( F `  I ) ( ( s `  I )  e.  z  /\  z  C_  ran  ( x  e.  U  |->  ( x `  I
) ) ) ) ) )
9695expimpd 587 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  F : A
--> Top  /\  I  e.  A )  /\  U  e.  J )  /\  s  e.  U )  ->  (
( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e. 
Fin  A. y  e.  ( A  \  z ) ( g `  y
)  =  U. ( F `  y )
)  /\  w  =  X_ y  e.  A  ( g `  y ) )  ->  ( (
s  e.  w  /\  w  C_  U )  ->  E. z  e.  ( F `  I )
( ( s `  I )  e.  z  /\  z  C_  ran  ( x  e.  U  |->  ( x `  I
) ) ) ) ) )
9796exlimdv 1646 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  F : A
--> Top  /\  I  e.  A )  /\  U  e.  J )  /\  s  e.  U )  ->  ( E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  w  = 
X_ y  e.  A  ( g `  y
) )  ->  (
( s  e.  w  /\  w  C_  U )  ->  E. z  e.  ( F `  I ) ( ( s `  I )  e.  z  /\  z  C_  ran  ( x  e.  U  |->  ( x `  I
) ) ) ) ) )
9825, 97syl5bi 209 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  F : A
--> Top  /\  I  e.  A )  /\  U  e.  J )  /\  s  e.  U )  ->  (
w  e.  { s  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  ( g `  y
)  e.  ( F `
 y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z ) ( g `
 y )  = 
U. ( F `  y ) )  /\  s  =  X_ y  e.  A  ( g `  y ) ) }  ->  ( ( s  e.  w  /\  w  C_  U )  ->  E. z  e.  ( F `  I
) ( ( s `
 I )  e.  z  /\  z  C_  ran  ( x  e.  U  |->  ( x `  I
) ) ) ) ) )
9998rexlimdv 2821 . . . . . 6  |-  ( ( ( ( A  e.  V  /\  F : A
--> Top  /\  I  e.  A )  /\  U  e.  J )  /\  s  e.  U )  ->  ( E. w  e.  { s  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  ( g `  y
)  e.  ( F `
 y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z ) ( g `
 y )  = 
U. ( F `  y ) )  /\  s  =  X_ y  e.  A  ( g `  y ) ) }  ( s  e.  w  /\  w  C_  U )  ->  E. z  e.  ( F `  I ) ( ( s `  I )  e.  z  /\  z  C_  ran  ( x  e.  U  |->  ( x `  I
) ) ) ) )
10020, 99mpd 15 . . . . 5  |-  ( ( ( ( A  e.  V  /\  F : A
--> Top  /\  I  e.  A )  /\  U  e.  J )  /\  s  e.  U )  ->  E. z  e.  ( F `  I
) ( ( s `
 I )  e.  z  /\  z  C_  ran  ( x  e.  U  |->  ( x `  I
) ) ) )
101100ralrimiva 2781 . . . 4  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J
)  ->  A. s  e.  U  E. z  e.  ( F `  I
) ( ( s `
 I )  e.  z  /\  z  C_  ran  ( x  e.  U  |->  ( x `  I
) ) ) )
102 fvex 5734 . . . . . 6  |-  ( s `
 I )  e. 
_V
103102rgenw 2765 . . . . 5  |-  A. s  e.  U  ( s `  I )  e.  _V
104 fveq1 5719 . . . . . . 7  |-  ( x  =  s  ->  (
x `  I )  =  ( s `  I ) )
105104cbvmptv 4292 . . . . . 6  |-  ( x  e.  U  |->  ( x `
 I ) )  =  ( s  e.  U  |->  ( s `  I ) )
106 eleq1 2495 . . . . . . . 8  |-  ( y  =  ( s `  I )  ->  (
y  e.  z  <->  ( s `  I )  e.  z ) )
107106anbi1d 686 . . . . . . 7  |-  ( y  =  ( s `  I )  ->  (
( y  e.  z  /\  z  C_  ran  ( x  e.  U  |->  ( x `  I
) ) )  <->  ( (
s `  I )  e.  z  /\  z  C_ 
ran  ( x  e.  U  |->  ( x `  I ) ) ) ) )
108107rexbidv 2718 . . . . . 6  |-  ( y  =  ( s `  I )  ->  ( E. z  e.  ( F `  I )
( y  e.  z  /\  z  C_  ran  ( x  e.  U  |->  ( x `  I
) ) )  <->  E. z  e.  ( F `  I
) ( ( s `
 I )  e.  z  /\  z  C_  ran  ( x  e.  U  |->  ( x `  I
) ) ) ) )
109105, 108ralrnmpt 5870 . . . . 5  |-  ( A. s  e.  U  (
s `  I )  e.  _V  ->  ( A. y  e.  ran  ( x  e.  U  |->  ( x `
 I ) ) E. z  e.  ( F `  I ) ( y  e.  z  /\  z  C_  ran  ( x  e.  U  |->  ( x `  I
) ) )  <->  A. s  e.  U  E. z  e.  ( F `  I
) ( ( s `
 I )  e.  z  /\  z  C_  ran  ( x  e.  U  |->  ( x `  I
) ) ) ) )
110103, 109ax-mp 8 . . . 4  |-  ( A. y  e.  ran  ( x  e.  U  |->  ( x `
 I ) ) E. z  e.  ( F `  I ) ( y  e.  z  /\  z  C_  ran  ( x  e.  U  |->  ( x `  I
) ) )  <->  A. s  e.  U  E. z  e.  ( F `  I
) ( ( s `
 I )  e.  z  /\  z  C_  ran  ( x  e.  U  |->  ( x `  I
) ) ) )
111101, 110sylibr 204 . . 3  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J
)  ->  A. y  e.  ran  ( x  e.  U  |->  ( x `  I ) ) E. z  e.  ( F `
 I ) ( y  e.  z  /\  z  C_  ran  ( x  e.  U  |->  ( x `
 I ) ) ) )
112 simpl2 961 . . . . 5  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J
)  ->  F : A
--> Top )
113112, 26ffvelrnd 5863 . . . 4  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J
)  ->  ( F `  I )  e.  Top )
114 eltop2 17032 . . . 4  |-  ( ( F `  I )  e.  Top  ->  ( ran  ( x  e.  U  |->  ( x `  I
) )  e.  ( F `  I )  <->  A. y  e.  ran  ( x  e.  U  |->  ( x `  I
) ) E. z  e.  ( F `  I
) ( y  e.  z  /\  z  C_  ran  ( x  e.  U  |->  ( x `  I
) ) ) ) )
115113, 114syl 16 . . 3  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J
)  ->  ( ran  ( x  e.  U  |->  ( x `  I
) )  e.  ( F `  I )  <->  A. y  e.  ran  ( x  e.  U  |->  ( x `  I
) ) E. z  e.  ( F `  I
) ( y  e.  z  /\  z  C_  ran  ( x  e.  U  |->  ( x `  I
) ) ) ) )
116111, 115mpbird 224 . 2  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J
)  ->  ran  ( x  e.  U  |->  ( x `
 I ) )  e.  ( F `  I ) )
1179, 116eqeltrd 2509 1  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  I  e.  A )  /\  U  e.  J
)  ->  ( (
x  e.  Y  |->  ( x `  I ) ) " U )  e.  ( F `  I ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   E.wex 1550    = wceq 1652    e. wcel 1725   {cab 2421   A.wral 2697   E.wrex 2698   _Vcvv 2948    \ cdif 3309    C_ wss 3312   ifcif 3731   U.cuni 4007    e. cmpt 4258   ran crn 4871    |` cres 4872   "cima 4873    Fn wfn 5441   -->wf 5442   ` cfv 5446   X_cixp 7055   Fincfn 7101   topGenctg 13657   Xt_cpt 13658   Topctop 16950
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ixp 7056  df-topgen 13659  df-pt 13660  df-top 16955
  Copyright terms: Public domain W3C validator