MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptrescn Structured version   Unicode version

Theorem ptrescn 17663
Description: Restriction is a continuous function on product topologies. (Contributed by Mario Carneiro, 7-Feb-2015.)
Hypotheses
Ref Expression
ptrescn.1  |-  X  = 
U. J
ptrescn.2  |-  J  =  ( Xt_ `  F
)
ptrescn.3  |-  K  =  ( Xt_ `  ( F  |`  B ) )
Assertion
Ref Expression
ptrescn  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  -> 
( x  e.  X  |->  ( x  |`  B ) )  e.  ( J  Cn  K ) )
Distinct variable groups:    x, A    x, B    x, F    x, K    x, V    x, X
Allowed substitution hint:    J( x)

Proof of Theorem ptrescn
Dummy variables  u  k  v  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 962 . . . . 5  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  x  e.  X )  ->  B  C_  A )
2 ptrescn.2 . . . . . . . . . 10  |-  J  =  ( Xt_ `  F
)
32ptuni 17618 . . . . . . . . 9  |-  ( ( A  e.  V  /\  F : A --> Top )  -> 
X_ k  e.  A  U. ( F `  k
)  =  U. J
)
433adant3 977 . . . . . . . 8  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  X_ k  e.  A  U. ( F `  k )  =  U. J )
5 ptrescn.1 . . . . . . . 8  |-  X  = 
U. J
64, 5syl6eqr 2485 . . . . . . 7  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  X_ k  e.  A  U. ( F `  k )  =  X )
76eleq2d 2502 . . . . . 6  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  -> 
( x  e.  X_ k  e.  A  U. ( F `  k )  <-> 
x  e.  X ) )
87biimpar 472 . . . . 5  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  x  e.  X )  ->  x  e.  X_ k  e.  A  U. ( F `  k )
)
9 resixp 7089 . . . . 5  |-  ( ( B  C_  A  /\  x  e.  X_ k  e.  A  U. ( F `
 k ) )  ->  ( x  |`  B )  e.  X_ k  e.  B  U. ( F `  k ) )
101, 8, 9syl2anc 643 . . . 4  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  x  e.  X )  ->  ( x  |`  B )  e.  X_ k  e.  B  U. ( F `  k
) )
11 ixpeq2 7068 . . . . . . 7  |-  ( A. k  e.  B  U. ( ( F  |`  B ) `  k
)  =  U. ( F `  k )  -> 
X_ k  e.  B  U. ( ( F  |`  B ) `  k
)  =  X_ k  e.  B  U. ( F `  k )
)
12 fvres 5737 . . . . . . . 8  |-  ( k  e.  B  ->  (
( F  |`  B ) `
 k )  =  ( F `  k
) )
1312unieqd 4018 . . . . . . 7  |-  ( k  e.  B  ->  U. (
( F  |`  B ) `
 k )  = 
U. ( F `  k ) )
1411, 13mprg 2767 . . . . . 6  |-  X_ k  e.  B  U. (
( F  |`  B ) `
 k )  = 
X_ k  e.  B  U. ( F `  k
)
15 ssexg 4341 . . . . . . . . 9  |-  ( ( B  C_  A  /\  A  e.  V )  ->  B  e.  _V )
1615ancoms 440 . . . . . . . 8  |-  ( ( A  e.  V  /\  B  C_  A )  ->  B  e.  _V )
17163adant2 976 . . . . . . 7  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  B  e.  _V )
18 fssres 5602 . . . . . . . 8  |-  ( ( F : A --> Top  /\  B  C_  A )  -> 
( F  |`  B ) : B --> Top )
19183adant1 975 . . . . . . 7  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  -> 
( F  |`  B ) : B --> Top )
20 ptrescn.3 . . . . . . . 8  |-  K  =  ( Xt_ `  ( F  |`  B ) )
2120ptuni 17618 . . . . . . 7  |-  ( ( B  e.  _V  /\  ( F  |`  B ) : B --> Top )  -> 
X_ k  e.  B  U. ( ( F  |`  B ) `  k
)  =  U. K
)
2217, 19, 21syl2anc 643 . . . . . 6  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  X_ k  e.  B  U. ( ( F  |`  B ) `  k
)  =  U. K
)
2314, 22syl5eqr 2481 . . . . 5  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  X_ k  e.  B  U. ( F `  k )  =  U. K )
2423adantr 452 . . . 4  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  x  e.  X )  -> 
X_ k  e.  B  U. ( F `  k
)  =  U. K
)
2510, 24eleqtrd 2511 . . 3  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  x  e.  X )  ->  ( x  |`  B )  e.  U. K )
26 eqid 2435 . . 3  |-  ( x  e.  X  |->  ( x  |`  B ) )  =  ( x  e.  X  |->  ( x  |`  B ) )
2725, 26fmptd 5885 . 2  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  -> 
( x  e.  X  |->  ( x  |`  B ) ) : X --> U. K
)
28 fimacnv 5854 . . . . . . 7  |-  ( ( x  e.  X  |->  ( x  |`  B )
) : X --> U. K  ->  ( `' ( x  e.  X  |->  ( x  |`  B ) ) " U. K )  =  X )
2927, 28syl 16 . . . . . 6  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  -> 
( `' ( x  e.  X  |->  ( x  |`  B ) ) " U. K )  =  X )
30 pttop 17606 . . . . . . . . 9  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  ( Xt_ `  F
)  e.  Top )
312, 30syl5eqel 2519 . . . . . . . 8  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  J  e.  Top )
32313adant3 977 . . . . . . 7  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  J  e.  Top )
335topopn 16971 . . . . . . 7  |-  ( J  e.  Top  ->  X  e.  J )
3432, 33syl 16 . . . . . 6  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  X  e.  J )
3529, 34eqeltrd 2509 . . . . 5  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  -> 
( `' ( x  e.  X  |->  ( x  |`  B ) ) " U. K )  e.  J
)
36 elsni 3830 . . . . . . 7  |-  ( v  e.  { U. K }  ->  v  =  U. K )
3736imaeq2d 5195 . . . . . 6  |-  ( v  e.  { U. K }  ->  ( `' ( x  e.  X  |->  ( x  |`  B )
) " v )  =  ( `' ( x  e.  X  |->  ( x  |`  B )
) " U. K
) )
3837eleq1d 2501 . . . . 5  |-  ( v  e.  { U. K }  ->  ( ( `' ( x  e.  X  |->  ( x  |`  B ) ) " v )  e.  J  <->  ( `' ( x  e.  X  |->  ( x  |`  B ) ) " U. K
)  e.  J ) )
3935, 38syl5ibrcom 214 . . . 4  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  -> 
( v  e.  { U. K }  ->  ( `' ( x  e.  X  |->  ( x  |`  B ) ) "
v )  e.  J
) )
4039ralrimiv 2780 . . 3  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  A. v  e.  { U. K }  ( `' ( x  e.  X  |->  ( x  |`  B ) ) " v )  e.  J )
41 imaco 5367 . . . . . . . . 9  |-  ( ( `' ( x  e.  X  |->  ( x  |`  B ) )  o.  `' ( z  e. 
U. K  |->  ( z `
 k ) ) ) " u )  =  ( `' ( x  e.  X  |->  ( x  |`  B )
) " ( `' ( z  e.  U. K  |->  ( z `  k ) ) "
u ) )
42 cnvco 5048 . . . . . . . . . . 11  |-  `' ( ( z  e.  U. K  |->  ( z `  k ) )  o.  ( x  e.  X  |->  ( x  |`  B ) ) )  =  ( `' ( x  e.  X  |->  ( x  |`  B ) )  o.  `' ( z  e. 
U. K  |->  ( z `
 k ) ) )
4325adantlr 696 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  V  /\  F : A
--> Top  /\  B  C_  A )  /\  (
k  e.  B  /\  u  e.  ( F `  k ) ) )  /\  x  e.  X
)  ->  ( x  |`  B )  e.  U. K )
44 eqidd 2436 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  (
x  e.  X  |->  ( x  |`  B )
)  =  ( x  e.  X  |->  ( x  |`  B ) ) )
45 eqidd 2436 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  (
z  e.  U. K  |->  ( z `  k
) )  =  ( z  e.  U. K  |->  ( z `  k
) ) )
46 fveq1 5719 . . . . . . . . . . . . . 14  |-  ( z  =  ( x  |`  B )  ->  (
z `  k )  =  ( ( x  |`  B ) `  k
) )
4743, 44, 45, 46fmptco 5893 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  (
( z  e.  U. K  |->  ( z `  k ) )  o.  ( x  e.  X  |->  ( x  |`  B ) ) )  =  ( x  e.  X  |->  ( ( x  |`  B ) `
 k ) ) )
48 fvres 5737 . . . . . . . . . . . . . . 15  |-  ( k  e.  B  ->  (
( x  |`  B ) `
 k )  =  ( x `  k
) )
4948ad2antrl 709 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  (
( x  |`  B ) `
 k )  =  ( x `  k
) )
5049mpteq2dv 4288 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  (
x  e.  X  |->  ( ( x  |`  B ) `
 k ) )  =  ( x  e.  X  |->  ( x `  k ) ) )
5147, 50eqtrd 2467 . . . . . . . . . . . 12  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  (
( z  e.  U. K  |->  ( z `  k ) )  o.  ( x  e.  X  |->  ( x  |`  B ) ) )  =  ( x  e.  X  |->  ( x `  k ) ) )
5251cnveqd 5040 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  `' ( ( z  e. 
U. K  |->  ( z `
 k ) )  o.  ( x  e.  X  |->  ( x  |`  B ) ) )  =  `' ( x  e.  X  |->  ( x `
 k ) ) )
5342, 52syl5eqr 2481 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  ( `' ( x  e.  X  |->  ( x  |`  B ) )  o.  `' ( z  e. 
U. K  |->  ( z `
 k ) ) )  =  `' ( x  e.  X  |->  ( x `  k ) ) )
5453imaeq1d 5194 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  (
( `' ( x  e.  X  |->  ( x  |`  B ) )  o.  `' ( z  e. 
U. K  |->  ( z `
 k ) ) ) " u )  =  ( `' ( x  e.  X  |->  ( x `  k ) ) " u ) )
5541, 54syl5eqr 2481 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  ( `' ( x  e.  X  |->  ( x  |`  B ) ) "
( `' ( z  e.  U. K  |->  ( z `  k ) ) " u ) )  =  ( `' ( x  e.  X  |->  ( x `  k
) ) " u
) )
56 simpl1 960 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  A  e.  V )
57 simpl2 961 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  F : A --> Top )
58 simpl3 962 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  B  C_  A )
59 simprl 733 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  k  e.  B )
6058, 59sseldd 3341 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  k  e.  A )
615, 2ptpjcn 17635 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  F : A --> Top  /\  k  e.  A )  ->  ( x  e.  X  |->  ( x `  k
) )  e.  ( J  Cn  ( F `
 k ) ) )
6256, 57, 60, 61syl3anc 1184 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  (
x  e.  X  |->  ( x `  k ) )  e.  ( J  Cn  ( F `  k ) ) )
63 simprr 734 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  u  e.  ( F `  k
) )
64 cnima 17321 . . . . . . . . 9  |-  ( ( ( x  e.  X  |->  ( x `  k
) )  e.  ( J  Cn  ( F `
 k ) )  /\  u  e.  ( F `  k ) )  ->  ( `' ( x  e.  X  |->  ( x `  k
) ) " u
)  e.  J )
6562, 63, 64syl2anc 643 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  ( `' ( x  e.  X  |->  ( x `  k ) ) "
u )  e.  J
)
6655, 65eqeltrd 2509 . . . . . . 7  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  ( `' ( x  e.  X  |->  ( x  |`  B ) ) "
( `' ( z  e.  U. K  |->  ( z `  k ) ) " u ) )  e.  J )
67 imaeq2 5191 . . . . . . . 8  |-  ( v  =  ( `' ( z  e.  U. K  |->  ( z `  k
) ) " u
)  ->  ( `' ( x  e.  X  |->  ( x  |`  B ) ) " v )  =  ( `' ( x  e.  X  |->  ( x  |`  B )
) " ( `' ( z  e.  U. K  |->  ( z `  k ) ) "
u ) ) )
6867eleq1d 2501 . . . . . . 7  |-  ( v  =  ( `' ( z  e.  U. K  |->  ( z `  k
) ) " u
)  ->  ( ( `' ( x  e.  X  |->  ( x  |`  B ) ) "
v )  e.  J  <->  ( `' ( x  e.  X  |->  ( x  |`  B ) ) "
( `' ( z  e.  U. K  |->  ( z `  k ) ) " u ) )  e.  J ) )
6966, 68syl5ibrcom 214 . . . . . 6  |-  ( ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  /\  ( k  e.  B  /\  u  e.  ( F `  k )
) )  ->  (
v  =  ( `' ( z  e.  U. K  |->  ( z `  k ) ) "
u )  ->  ( `' ( x  e.  X  |->  ( x  |`  B ) ) "
v )  e.  J
) )
7069rexlimdvva 2829 . . . . 5  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  -> 
( E. k  e.  B  E. u  e.  ( F `  k
) v  =  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u )  -> 
( `' ( x  e.  X  |->  ( x  |`  B ) ) "
v )  e.  J
) )
7170alrimiv 1641 . . . 4  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  A. v ( E. k  e.  B  E. u  e.  ( F `  k
) v  =  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u )  -> 
( `' ( x  e.  X  |->  ( x  |`  B ) ) "
v )  e.  J
) )
72 eqid 2435 . . . . . . 7  |-  ( k  e.  B ,  u  e.  ( ( F  |`  B ) `  k
)  |->  ( `' ( z  e.  U. K  |->  ( z `  k
) ) " u
) )  =  ( k  e.  B ,  u  e.  ( ( F  |`  B ) `  k )  |->  ( `' ( z  e.  U. K  |->  ( z `  k ) ) "
u ) )
7372rnmpt2 6172 . . . . . 6  |-  ran  (
k  e.  B ,  u  e.  ( ( F  |`  B ) `  k )  |->  ( `' ( z  e.  U. K  |->  ( z `  k ) ) "
u ) )  =  { y  |  E. k  e.  B  E. u  e.  ( ( F  |`  B ) `  k ) y  =  ( `' ( z  e.  U. K  |->  ( z `  k ) ) " u ) }
7473raleqi 2900 . . . . 5  |-  ( A. v  e.  ran  ( k  e.  B ,  u  e.  ( ( F  |`  B ) `  k
)  |->  ( `' ( z  e.  U. K  |->  ( z `  k
) ) " u
) ) ( `' ( x  e.  X  |->  ( x  |`  B ) ) " v )  e.  J  <->  A. v  e.  { y  |  E. k  e.  B  E. u  e.  ( ( F  |`  B ) `  k ) y  =  ( `' ( z  e.  U. K  |->  ( z `  k ) ) " u ) }  ( `' ( x  e.  X  |->  ( x  |`  B )
) " v )  e.  J )
7512rexeqdv 2903 . . . . . . . 8  |-  ( k  e.  B  ->  ( E. u  e.  (
( F  |`  B ) `
 k ) y  =  ( `' ( z  e.  U. K  |->  ( z `  k
) ) " u
)  <->  E. u  e.  ( F `  k ) y  =  ( `' ( z  e.  U. K  |->  ( z `  k ) ) "
u ) ) )
76 eqeq1 2441 . . . . . . . . 9  |-  ( y  =  v  ->  (
y  =  ( `' ( z  e.  U. K  |->  ( z `  k ) ) "
u )  <->  v  =  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u ) ) )
7776rexbidv 2718 . . . . . . . 8  |-  ( y  =  v  ->  ( E. u  e.  ( F `  k )
y  =  ( `' ( z  e.  U. K  |->  ( z `  k ) ) "
u )  <->  E. u  e.  ( F `  k
) v  =  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u ) ) )
7875, 77sylan9bbr 682 . . . . . . 7  |-  ( ( y  =  v  /\  k  e.  B )  ->  ( E. u  e.  ( ( F  |`  B ) `  k
) y  =  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u )  <->  E. u  e.  ( F `  k
) v  =  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u ) ) )
7978rexbidva 2714 . . . . . 6  |-  ( y  =  v  ->  ( E. k  e.  B  E. u  e.  (
( F  |`  B ) `
 k ) y  =  ( `' ( z  e.  U. K  |->  ( z `  k
) ) " u
)  <->  E. k  e.  B  E. u  e.  ( F `  k )
v  =  ( `' ( z  e.  U. K  |->  ( z `  k ) ) "
u ) ) )
8079ralab 3087 . . . . 5  |-  ( A. v  e.  { y  |  E. k  e.  B  E. u  e.  (
( F  |`  B ) `
 k ) y  =  ( `' ( z  e.  U. K  |->  ( z `  k
) ) " u
) }  ( `' ( x  e.  X  |->  ( x  |`  B ) ) " v )  e.  J  <->  A. v
( E. k  e.  B  E. u  e.  ( F `  k
) v  =  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u )  -> 
( `' ( x  e.  X  |->  ( x  |`  B ) ) "
v )  e.  J
) )
8174, 80bitri 241 . . . 4  |-  ( A. v  e.  ran  ( k  e.  B ,  u  e.  ( ( F  |`  B ) `  k
)  |->  ( `' ( z  e.  U. K  |->  ( z `  k
) ) " u
) ) ( `' ( x  e.  X  |->  ( x  |`  B ) ) " v )  e.  J  <->  A. v
( E. k  e.  B  E. u  e.  ( F `  k
) v  =  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u )  -> 
( `' ( x  e.  X  |->  ( x  |`  B ) ) "
v )  e.  J
) )
8271, 81sylibr 204 . . 3  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  A. v  e.  ran  ( k  e.  B ,  u  e.  (
( F  |`  B ) `
 k )  |->  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u ) ) ( `' ( x  e.  X  |->  ( x  |`  B ) ) "
v )  e.  J
)
83 ralunb 3520 . . 3  |-  ( A. v  e.  ( { U. K }  u.  ran  ( k  e.  B ,  u  e.  (
( F  |`  B ) `
 k )  |->  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u ) ) ) ( `' ( x  e.  X  |->  ( x  |`  B )
) " v )  e.  J  <->  ( A. v  e.  { U. K }  ( `' ( x  e.  X  |->  ( x  |`  B )
) " v )  e.  J  /\  A. v  e.  ran  ( k  e.  B ,  u  e.  ( ( F  |`  B ) `  k
)  |->  ( `' ( z  e.  U. K  |->  ( z `  k
) ) " u
) ) ( `' ( x  e.  X  |->  ( x  |`  B ) ) " v )  e.  J ) )
8440, 82, 83sylanbrc 646 . 2  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  A. v  e.  ( { U. K }  u.  ran  ( k  e.  B ,  u  e.  (
( F  |`  B ) `
 k )  |->  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u ) ) ) ( `' ( x  e.  X  |->  ( x  |`  B )
) " v )  e.  J )
855toptopon 16990 . . . 4  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
8632, 85sylib 189 . . 3  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  J  e.  (TopOn `  X
) )
87 snex 4397 . . . 4  |-  { U. K }  e.  _V
88 fvex 5734 . . . . . . . 8  |-  ( ( F  |`  B ) `  k )  e.  _V
8988abrexex 5975 . . . . . . 7  |-  { y  |  E. u  e.  ( ( F  |`  B ) `  k
) y  =  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u ) }  e.  _V
9089rgenw 2765 . . . . . 6  |-  A. k  e.  B  { y  |  E. u  e.  ( ( F  |`  B ) `
 k ) y  =  ( `' ( z  e.  U. K  |->  ( z `  k
) ) " u
) }  e.  _V
91 abrexex2g 5980 . . . . . 6  |-  ( ( B  e.  _V  /\  A. k  e.  B  {
y  |  E. u  e.  ( ( F  |`  B ) `  k
) y  =  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u ) }  e.  _V )  ->  { y  |  E. k  e.  B  E. u  e.  ( ( F  |`  B ) `  k ) y  =  ( `' ( z  e.  U. K  |->  ( z `  k ) ) " u ) }  e.  _V )
9217, 90, 91sylancl 644 . . . . 5  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  { y  |  E. k  e.  B  E. u  e.  ( ( F  |`  B ) `  k ) y  =  ( `' ( z  e.  U. K  |->  ( z `  k ) ) " u ) }  e.  _V )
9373, 92syl5eqel 2519 . . . 4  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  ran  ( k  e.  B ,  u  e.  (
( F  |`  B ) `
 k )  |->  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u ) )  e.  _V )
94 unexg 4702 . . . 4  |-  ( ( { U. K }  e.  _V  /\  ran  (
k  e.  B ,  u  e.  ( ( F  |`  B ) `  k )  |->  ( `' ( z  e.  U. K  |->  ( z `  k ) ) "
u ) )  e. 
_V )  ->  ( { U. K }  u.  ran  ( k  e.  B ,  u  e.  (
( F  |`  B ) `
 k )  |->  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u ) ) )  e.  _V )
9587, 93, 94sylancr 645 . . 3  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  -> 
( { U. K }  u.  ran  ( k  e.  B ,  u  e.  ( ( F  |`  B ) `  k
)  |->  ( `' ( z  e.  U. K  |->  ( z `  k
) ) " u
) ) )  e. 
_V )
96 eqid 2435 . . . . 5  |-  U. K  =  U. K
9720, 96, 72ptval2 17625 . . . 4  |-  ( ( B  e.  _V  /\  ( F  |`  B ) : B --> Top )  ->  K  =  ( topGen `  ( fi `  ( { U. K }  u.  ran  ( k  e.  B ,  u  e.  (
( F  |`  B ) `
 k )  |->  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u ) ) ) ) ) )
9817, 19, 97syl2anc 643 . . 3  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  K  =  ( topGen `  ( fi `  ( { U. K }  u.  ran  ( k  e.  B ,  u  e.  (
( F  |`  B ) `
 k )  |->  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u ) ) ) ) ) )
99 pttop 17606 . . . . . 6  |-  ( ( B  e.  _V  /\  ( F  |`  B ) : B --> Top )  ->  ( Xt_ `  ( F  |`  B ) )  e.  Top )
10017, 19, 99syl2anc 643 . . . . 5  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  -> 
( Xt_ `  ( F  |`  B ) )  e. 
Top )
10120, 100syl5eqel 2519 . . . 4  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  K  e.  Top )
10296toptopon 16990 . . . 4  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
103101, 102sylib 189 . . 3  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  ->  K  e.  (TopOn `  U. K ) )
10486, 95, 98, 103subbascn 17310 . 2  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  -> 
( ( x  e.  X  |->  ( x  |`  B ) )  e.  ( J  Cn  K
)  <->  ( ( x  e.  X  |->  ( x  |`  B ) ) : X --> U. K  /\  A. v  e.  ( { U. K }  u.  ran  ( k  e.  B ,  u  e.  (
( F  |`  B ) `
 k )  |->  ( `' ( z  e. 
U. K  |->  ( z `
 k ) )
" u ) ) ) ( `' ( x  e.  X  |->  ( x  |`  B )
) " v )  e.  J ) ) )
10527, 84, 104mpbir2and 889 1  |-  ( ( A  e.  V  /\  F : A --> Top  /\  B  C_  A )  -> 
( x  e.  X  |->  ( x  |`  B ) )  e.  ( J  Cn  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936   A.wal 1549    = wceq 1652    e. wcel 1725   {cab 2421   A.wral 2697   E.wrex 2698   _Vcvv 2948    u. cun 3310    C_ wss 3312   {csn 3806   U.cuni 4007    e. cmpt 4258   `'ccnv 4869   ran crn 4871    |` cres 4872   "cima 4873    o. ccom 4874   -->wf 5442   ` cfv 5446  (class class class)co 6073    e. cmpt2 6075   X_cixp 7055   ficfi 7407   topGenctg 13657   Xt_cpt 13658   Topctop 16950  TopOnctopon 16951    Cn ccn 17280
This theorem is referenced by:  ptunhmeo  17832  tmdgsum  18117
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-map 7012  df-ixp 7056  df-en 7102  df-dom 7103  df-fin 7105  df-fi 7408  df-topgen 13659  df-pt 13660  df-top 16955  df-bases 16957  df-topon 16958  df-cn 17283
  Copyright terms: Public domain W3C validator