MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptuni2 Structured version   Unicode version

Theorem ptuni2 17600
Description: The base set for the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypothesis
Ref Expression
ptbas.1  |-  B  =  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }
Assertion
Ref Expression
ptuni2  |-  ( ( A  e.  V  /\  F : A --> Top )  -> 
X_ k  e.  A  U. ( F `  k
)  =  U. B
)
Distinct variable groups:    B, k    x, g, y, k, z, A    g, F, k, x, y, z    g, V, k, x, y, z
Allowed substitution hints:    B( x, y, z, g)

Proof of Theorem ptuni2
StepHypRef Expression
1 ptbas.1 . . . 4  |-  B  =  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }
21ptbasid 17599 . . 3  |-  ( ( A  e.  V  /\  F : A --> Top )  -> 
X_ k  e.  A  U. ( F `  k
)  e.  B )
3 elssuni 4035 . . 3  |-  ( X_ k  e.  A  U. ( F `  k )  e.  B  ->  X_ k  e.  A  U. ( F `  k )  C_ 
U. B )
42, 3syl 16 . 2  |-  ( ( A  e.  V  /\  F : A --> Top )  -> 
X_ k  e.  A  U. ( F `  k
)  C_  U. B )
5 simpr2 964 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  F : A --> Top )  /\  ( g  Fn  A  /\  A. y  e.  A  ( g `  y
)  e.  ( F `
 y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z ) ( g `
 y )  = 
U. ( F `  y ) ) )  ->  A. y  e.  A  ( g `  y
)  e.  ( F `
 y ) )
6 elssuni 4035 . . . . . . . . . . 11  |-  ( ( g `  y )  e.  ( F `  y )  ->  (
g `  y )  C_ 
U. ( F `  y ) )
76ralimi 2773 . . . . . . . . . 10  |-  ( A. y  e.  A  (
g `  y )  e.  ( F `  y
)  ->  A. y  e.  A  ( g `  y )  C_  U. ( F `  y )
)
8 ss2ixp 7067 . . . . . . . . . 10  |-  ( A. y  e.  A  (
g `  y )  C_ 
U. ( F `  y )  ->  X_ y  e.  A  ( g `  y )  C_  X_ y  e.  A  U. ( F `  y )
)
95, 7, 83syl 19 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  F : A --> Top )  /\  ( g  Fn  A  /\  A. y  e.  A  ( g `  y
)  e.  ( F `
 y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z ) ( g `
 y )  = 
U. ( F `  y ) ) )  ->  X_ y  e.  A  ( g `  y
)  C_  X_ y  e.  A  U. ( F `
 y ) )
10 fveq2 5720 . . . . . . . . . . 11  |-  ( y  =  k  ->  ( F `  y )  =  ( F `  k ) )
1110unieqd 4018 . . . . . . . . . 10  |-  ( y  =  k  ->  U. ( F `  y )  =  U. ( F `  k ) )
1211cbvixpv 7072 . . . . . . . . 9  |-  X_ y  e.  A  U. ( F `  y )  =  X_ k  e.  A  U. ( F `  k
)
139, 12syl6sseq 3386 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  F : A --> Top )  /\  ( g  Fn  A  /\  A. y  e.  A  ( g `  y
)  e.  ( F `
 y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z ) ( g `
 y )  = 
U. ( F `  y ) ) )  ->  X_ y  e.  A  ( g `  y
)  C_  X_ k  e.  A  U. ( F `
 k ) )
14 vex 2951 . . . . . . . . . 10  |-  x  e. 
_V
1514elpw 3797 . . . . . . . . 9  |-  ( x  e.  ~P X_ k  e.  A  U. ( F `  k )  <->  x 
C_  X_ k  e.  A  U. ( F `  k
) )
16 sseq1 3361 . . . . . . . . 9  |-  ( x  =  X_ y  e.  A  ( g `  y
)  ->  ( x  C_  X_ k  e.  A  U. ( F `  k
)  <->  X_ y  e.  A  ( g `  y
)  C_  X_ k  e.  A  U. ( F `
 k ) ) )
1715, 16syl5bb 249 . . . . . . . 8  |-  ( x  =  X_ y  e.  A  ( g `  y
)  ->  ( x  e.  ~P X_ k  e.  A  U. ( F `  k
)  <->  X_ y  e.  A  ( g `  y
)  C_  X_ k  e.  A  U. ( F `
 k ) ) )
1813, 17syl5ibrcom 214 . . . . . . 7  |-  ( ( ( A  e.  V  /\  F : A --> Top )  /\  ( g  Fn  A  /\  A. y  e.  A  ( g `  y
)  e.  ( F `
 y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z ) ( g `
 y )  = 
U. ( F `  y ) ) )  ->  ( x  = 
X_ y  e.  A  ( g `  y
)  ->  x  e.  ~P X_ k  e.  A  U. ( F `  k
) ) )
1918expimpd 587 . . . . . 6  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  ( ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) )  ->  x  e.  ~P X_ k  e.  A  U. ( F `  k
) ) )
2019exlimdv 1646 . . . . 5  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  ( E. g ( ( g  Fn  A  /\  A. y  e.  A  ( g `  y
)  e.  ( F `
 y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z ) ( g `
 y )  = 
U. ( F `  y ) )  /\  x  =  X_ y  e.  A  ( g `  y ) )  ->  x  e.  ~P X_ k  e.  A  U. ( F `  k )
) )
2120abssdv 3409 . . . 4  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }  C_  ~P X_ k  e.  A  U. ( F `  k
) )
221, 21syl5eqss 3384 . . 3  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  B  C_  ~P X_ k  e.  A  U. ( F `  k )
)
23 sspwuni 4168 . . 3  |-  ( B 
C_  ~P X_ k  e.  A  U. ( F `  k
)  <->  U. B  C_  X_ k  e.  A  U. ( F `  k )
)
2422, 23sylib 189 . 2  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  U. B  C_  X_ k  e.  A  U. ( F `  k )
)
254, 24eqssd 3357 1  |-  ( ( A  e.  V  /\  F : A --> Top )  -> 
X_ k  e.  A  U. ( F `  k
)  =  U. B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936   E.wex 1550    = wceq 1652    e. wcel 1725   {cab 2421   A.wral 2697   E.wrex 2698    \ cdif 3309    C_ wss 3312   ~Pcpw 3791   U.cuni 4007    Fn wfn 5441   -->wf 5442   ` cfv 5446   X_cixp 7055   Fincfn 7101   Topctop 16950
This theorem is referenced by:  ptbasin2  17602  ptbasfi  17605  ptuni  17618
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ixp 7056  df-en 7102  df-fin 7105  df-top 16955
  Copyright terms: Public domain W3C validator