MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptval Unicode version

Theorem ptval 17265
Description: The value of the product topology function. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypothesis
Ref Expression
ptval.1  |-  B  =  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }
Assertion
Ref Expression
ptval  |-  ( ( A  e.  V  /\  F  Fn  A )  ->  ( Xt_ `  F
)  =  ( topGen `  B ) )
Distinct variable groups:    x, g,
y, z, A    g, F, x, y, z    g, V, x, y, z
Allowed substitution hints:    B( x, y, z, g)

Proof of Theorem ptval
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 df-pt 13345 . . 3  |-  Xt_  =  ( f  e.  _V  |->  ( topGen `  { x  |  E. g ( ( g  Fn  dom  f  /\  A. y  e.  dom  f ( g `  y )  e.  ( f `  y )  /\  E. z  e. 
Fin  A. y  e.  ( dom  f  \  z
) ( g `  y )  =  U. ( f `  y
) )  /\  x  =  X_ y  e.  dom  f ( g `  y ) ) } ) )
21a1i 10 . 2  |-  ( ( A  e.  V  /\  F  Fn  A )  ->  Xt_  =  ( f  e.  _V  |->  ( topGen `  { x  |  E. g ( ( g  Fn  dom  f  /\  A. y  e.  dom  f
( g `  y
)  e.  ( f `
 y )  /\  E. z  e.  Fin  A. y  e.  ( dom  f  \  z ) ( g `  y )  =  U. ( f `
 y ) )  /\  x  =  X_ y  e.  dom  f ( g `  y ) ) } ) ) )
3 simpr 447 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  f  =  F )
43dmeqd 4881 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  dom  f  =  dom  F )
5 fndm 5343 . . . . . . . . . . 11  |-  ( F  Fn  A  ->  dom  F  =  A )
65ad2antlr 707 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  dom  F  =  A )
74, 6eqtrd 2315 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  dom  f  =  A )
87fneq2d 5336 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  (
g  Fn  dom  f  <->  g  Fn  A ) )
93fveq1d 5527 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  (
f `  y )  =  ( F `  y ) )
109eleq2d 2350 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  (
( g `  y
)  e.  ( f `
 y )  <->  ( g `  y )  e.  ( F `  y ) ) )
117, 10raleqbidv 2748 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  ( A. y  e.  dom  f ( g `  y )  e.  ( f `  y )  <->  A. y  e.  A  ( g `  y
)  e.  ( F `
 y ) ) )
127difeq1d 3293 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  ( dom  f  \  z
)  =  ( A 
\  z ) )
139unieqd 3838 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  U. (
f `  y )  =  U. ( F `  y ) )
1413eqeq2d 2294 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  (
( g `  y
)  =  U. (
f `  y )  <->  ( g `  y )  =  U. ( F `
 y ) ) )
1512, 14raleqbidv 2748 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  ( A. y  e.  ( dom  f  \  z
) ( g `  y )  =  U. ( f `  y
)  <->  A. y  e.  ( A  \  z ) ( g `  y
)  =  U. ( F `  y )
) )
1615rexbidv 2564 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  ( E. z  e.  Fin  A. y  e.  ( dom  f  \  z ) ( g `  y
)  =  U. (
f `  y )  <->  E. z  e.  Fin  A. y  e.  ( A  \  z ) ( g `
 y )  = 
U. ( F `  y ) ) )
178, 11, 163anbi123d 1252 . . . . . . 7  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  (
( g  Fn  dom  f  /\  A. y  e. 
dom  f ( g `
 y )  e.  ( f `  y
)  /\  E. z  e.  Fin  A. y  e.  ( dom  f  \ 
z ) ( g `
 y )  = 
U. ( f `  y ) )  <->  ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e. 
Fin  A. y  e.  ( A  \  z ) ( g `  y
)  =  U. ( F `  y )
) ) )
18 ixpeq1 6827 . . . . . . . . 9  |-  ( dom  f  =  A  ->  X_ y  e.  dom  f
( g `  y
)  =  X_ y  e.  A  ( g `  y ) )
197, 18syl 15 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  X_ y  e.  dom  f ( g `
 y )  = 
X_ y  e.  A  ( g `  y
) )
2019eqeq2d 2294 . . . . . . 7  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  (
x  =  X_ y  e.  dom  f ( g `
 y )  <->  x  =  X_ y  e.  A  ( g `  y ) ) )
2117, 20anbi12d 691 . . . . . 6  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  (
( ( g  Fn 
dom  f  /\  A. y  e.  dom  f ( g `  y )  e.  ( f `  y )  /\  E. z  e.  Fin  A. y  e.  ( dom  f  \ 
z ) ( g `
 y )  = 
U. ( f `  y ) )  /\  x  =  X_ y  e. 
dom  f ( g `
 y ) )  <-> 
( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e. 
Fin  A. y  e.  ( A  \  z ) ( g `  y
)  =  U. ( F `  y )
)  /\  x  =  X_ y  e.  A  ( g `  y ) ) ) )
2221exbidv 1612 . . . . 5  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  ( E. g ( ( g  Fn  dom  f  /\  A. y  e.  dom  f
( g `  y
)  e.  ( f `
 y )  /\  E. z  e.  Fin  A. y  e.  ( dom  f  \  z ) ( g `  y )  =  U. ( f `
 y ) )  /\  x  =  X_ y  e.  dom  f ( g `  y ) )  <->  E. g ( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) ) )
2322abbidv 2397 . . . 4  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  { x  |  E. g ( ( g  Fn  dom  f  /\  A. y  e.  dom  f ( g `  y )  e.  ( f `  y )  /\  E. z  e. 
Fin  A. y  e.  ( dom  f  \  z
) ( g `  y )  =  U. ( f `  y
) )  /\  x  =  X_ y  e.  dom  f ( g `  y ) ) }  =  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) } )
24 ptval.1 . . . 4  |-  B  =  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }
2523, 24syl6eqr 2333 . . 3  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  { x  |  E. g ( ( g  Fn  dom  f  /\  A. y  e.  dom  f ( g `  y )  e.  ( f `  y )  /\  E. z  e. 
Fin  A. y  e.  ( dom  f  \  z
) ( g `  y )  =  U. ( f `  y
) )  /\  x  =  X_ y  e.  dom  f ( g `  y ) ) }  =  B )
2625fveq2d 5529 . 2  |-  ( ( ( A  e.  V  /\  F  Fn  A
)  /\  f  =  F )  ->  ( topGen `
 { x  |  E. g ( ( g  Fn  dom  f  /\  A. y  e.  dom  f ( g `  y )  e.  ( f `  y )  /\  E. z  e. 
Fin  A. y  e.  ( dom  f  \  z
) ( g `  y )  =  U. ( f `  y
) )  /\  x  =  X_ y  e.  dom  f ( g `  y ) ) } )  =  ( topGen `  B ) )
27 fnex 5741 . . 3  |-  ( ( F  Fn  A  /\  A  e.  V )  ->  F  e.  _V )
2827ancoms 439 . 2  |-  ( ( A  e.  V  /\  F  Fn  A )  ->  F  e.  _V )
29 fvex 5539 . . 3  |-  ( topGen `  B )  e.  _V
3029a1i 10 . 2  |-  ( ( A  e.  V  /\  F  Fn  A )  ->  ( topGen `  B )  e.  _V )
312, 26, 28, 30fvmptd 5606 1  |-  ( ( A  e.  V  /\  F  Fn  A )  ->  ( Xt_ `  F
)  =  ( topGen `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934   E.wex 1528    = wceq 1623    e. wcel 1684   {cab 2269   A.wral 2543   E.wrex 2544   _Vcvv 2788    \ cdif 3149   U.cuni 3827    e. cmpt 4077   dom cdm 4689    Fn wfn 5250   ` cfv 5255   X_cixp 6817   Fincfn 6863   topGenctg 13342   Xt_cpt 13343
This theorem is referenced by:  pttop  17277  ptopn  17278  ptuni  17289  ptval2  17296  ptpjcn  17305  ptpjopn  17306  ptclsg  17309  ptcnp  17316  prdstopn  17322  xkoptsub  17348  ptcmplem1  17746  tmdgsum2  17779  prdsxmslem2  18075
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ixp 6818  df-pt 13345
  Copyright terms: Public domain W3C validator