MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptval2 Unicode version

Theorem ptval2 17396
Description: The value of the product topology function. (Contributed by Mario Carneiro, 7-Feb-2015.)
Hypotheses
Ref Expression
ptval2.1  |-  J  =  ( Xt_ `  F
)
ptval2.2  |-  X  = 
U. J
ptval2.3  |-  G  =  ( k  e.  A ,  u  e.  ( F `  k )  |->  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u ) )
Assertion
Ref Expression
ptval2  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  J  =  ( topGen `  ( fi `  ( { X }  u.  ran  G ) ) ) )
Distinct variable groups:    u, k, w, A    k, F, u, w    k, V, u, w    w, X
Allowed substitution hints:    G( w, u, k)    J( w, u, k)    X( u, k)

Proof of Theorem ptval2
Dummy variables  g  n  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffn 5469 . . 3  |-  ( F : A --> Top  ->  F  Fn  A )
2 ptval2.1 . . . 4  |-  J  =  ( Xt_ `  F
)
3 eqid 2358 . . . . 5  |-  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }  =  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }
43ptval 17365 . . . 4  |-  ( ( A  e.  V  /\  F  Fn  A )  ->  ( Xt_ `  F
)  =  ( topGen `  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) } ) )
52, 4syl5eq 2402 . . 3  |-  ( ( A  e.  V  /\  F  Fn  A )  ->  J  =  ( topGen `  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) } ) )
61, 5sylan2 460 . 2  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  J  =  ( topGen `  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) } ) )
7 eqid 2358 . . . . 5  |-  X_ n  e.  A  U. ( F `  n )  =  X_ n  e.  A  U. ( F `  n
)
83, 7ptbasfi 17376 . . . 4  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }  =  ( fi `  ( {
X_ n  e.  A  U. ( F `  n
) }  u.  ran  ( k  e.  A ,  u  e.  ( F `  k )  |->  ( `' ( w  e.  X_ n  e.  A  U. ( F `  n
)  |->  ( w `  k ) ) "
u ) ) ) ) )
92ptuni 17389 . . . . . . . 8  |-  ( ( A  e.  V  /\  F : A --> Top )  -> 
X_ n  e.  A  U. ( F `  n
)  =  U. J
)
10 ptval2.2 . . . . . . . 8  |-  X  = 
U. J
119, 10syl6eqr 2408 . . . . . . 7  |-  ( ( A  e.  V  /\  F : A --> Top )  -> 
X_ n  e.  A  U. ( F `  n
)  =  X )
1211sneqd 3729 . . . . . 6  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  { X_ n  e.  A  U. ( F `
 n ) }  =  { X }
)
13113ad2ant1 976 . . . . . . . . . . . 12  |-  ( ( ( A  e.  V  /\  F : A --> Top )  /\  k  e.  A  /\  u  e.  ( F `  k )
)  ->  X_ n  e.  A  U. ( F `
 n )  =  X )
14 mpteq1 4179 . . . . . . . . . . . 12  |-  ( X_ n  e.  A  U. ( F `  n )  =  X  ->  (
w  e.  X_ n  e.  A  U. ( F `  n )  |->  ( w `  k
) )  =  ( w  e.  X  |->  ( w `  k ) ) )
1513, 14syl 15 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  F : A --> Top )  /\  k  e.  A  /\  u  e.  ( F `  k )
)  ->  ( w  e.  X_ n  e.  A  U. ( F `  n
)  |->  ( w `  k ) )  =  ( w  e.  X  |->  ( w `  k
) ) )
1615cnveqd 4936 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  F : A --> Top )  /\  k  e.  A  /\  u  e.  ( F `  k )
)  ->  `' (
w  e.  X_ n  e.  A  U. ( F `  n )  |->  ( w `  k
) )  =  `' ( w  e.  X  |->  ( w `  k
) ) )
1716imaeq1d 5090 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  F : A --> Top )  /\  k  e.  A  /\  u  e.  ( F `  k )
)  ->  ( `' ( w  e.  X_ n  e.  A  U. ( F `  n )  |->  ( w `  k
) ) " u
)  =  ( `' ( w  e.  X  |->  ( w `  k
) ) " u
) )
1817mpt2eq3dva 5996 . . . . . . . 8  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  ( k  e.  A ,  u  e.  ( F `  k )  |->  ( `' ( w  e.  X_ n  e.  A  U. ( F `  n
)  |->  ( w `  k ) ) "
u ) )  =  ( k  e.  A ,  u  e.  ( F `  k )  |->  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u ) ) )
19 ptval2.3 . . . . . . . 8  |-  G  =  ( k  e.  A ,  u  e.  ( F `  k )  |->  ( `' ( w  e.  X  |->  ( w `
 k ) )
" u ) )
2018, 19syl6eqr 2408 . . . . . . 7  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  ( k  e.  A ,  u  e.  ( F `  k )  |->  ( `' ( w  e.  X_ n  e.  A  U. ( F `  n
)  |->  ( w `  k ) ) "
u ) )  =  G )
2120rneqd 4985 . . . . . 6  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  ran  ( k  e.  A ,  u  e.  ( F `  k
)  |->  ( `' ( w  e.  X_ n  e.  A  U. ( F `  n )  |->  ( w `  k
) ) " u
) )  =  ran  G )
2212, 21uneq12d 3406 . . . . 5  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  ( { X_ n  e.  A  U. ( F `  n ) }  u.  ran  ( k  e.  A ,  u  e.  ( F `  k
)  |->  ( `' ( w  e.  X_ n  e.  A  U. ( F `  n )  |->  ( w `  k
) ) " u
) ) )  =  ( { X }  u.  ran  G ) )
2322fveq2d 5609 . . . 4  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  ( fi `  ( { X_ n  e.  A  U. ( F `  n
) }  u.  ran  ( k  e.  A ,  u  e.  ( F `  k )  |->  ( `' ( w  e.  X_ n  e.  A  U. ( F `  n
)  |->  ( w `  k ) ) "
u ) ) ) )  =  ( fi
`  ( { X }  u.  ran  G ) ) )
248, 23eqtrd 2390 . . 3  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( F `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) }  =  ( fi `  ( { X }  u.  ran  G ) ) )
2524fveq2d 5609 . 2  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  ( topGen `  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( F `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( F `  y ) )  /\  x  = 
X_ y  e.  A  ( g `  y
) ) } )  =  ( topGen `  ( fi `  ( { X }  u.  ran  G ) ) ) )
266, 25eqtrd 2390 1  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  J  =  ( topGen `  ( fi `  ( { X }  u.  ran  G ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934   E.wex 1541    = wceq 1642    e. wcel 1710   {cab 2344   A.wral 2619   E.wrex 2620    \ cdif 3225    u. cun 3226   {csn 3716   U.cuni 3906    e. cmpt 4156   `'ccnv 4767   ran crn 4769   "cima 4771    Fn wfn 5329   -->wf 5330   ` cfv 5334    e. cmpt2 5944   X_cixp 6902   Fincfn 6948   ficfi 7251   topGenctg 13435   Xt_cpt 13436   Topctop 16731
This theorem is referenced by:  ptrescn  17433
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3907  df-int 3942  df-iun 3986  df-iin 3987  df-br 4103  df-opab 4157  df-mpt 4158  df-tr 4193  df-eprel 4384  df-id 4388  df-po 4393  df-so 4394  df-fr 4431  df-we 4433  df-ord 4474  df-on 4475  df-lim 4476  df-suc 4477  df-om 4736  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-1st 6206  df-2nd 6207  df-recs 6472  df-rdg 6507  df-1o 6563  df-oadd 6567  df-er 6744  df-ixp 6903  df-en 6949  df-dom 6950  df-fin 6952  df-fi 7252  df-topgen 13437  df-pt 13438  df-top 16736  df-bases 16738
  Copyright terms: Public domain W3C validator