MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfilem Unicode version

Theorem pwfilem 7150
Description: Lemma for pwfi 7151. (Contributed by NM, 26-Mar-2007.)
Hypothesis
Ref Expression
pwfilem.1  |-  F  =  ( c  e.  ~P b  |->  ( c  u. 
{ x } ) )
Assertion
Ref Expression
pwfilem  |-  ( ~P b  e.  Fin  ->  ~P ( b  u.  {
x } )  e. 
Fin )
Distinct variable groups:    b, c    x, c
Allowed substitution hints:    F( x, b, c)

Proof of Theorem pwfilem
Dummy variable  d is distinct from all other variables.
StepHypRef Expression
1 pwundif 4300 . 2  |-  ~P (
b  u.  { x } )  =  ( ( ~P ( b  u.  { x }
)  \  ~P b
)  u.  ~P b
)
2 vex 2791 . . . . . . . . 9  |-  c  e. 
_V
3 snex 4216 . . . . . . . . 9  |-  { x }  e.  _V
42, 3unex 4518 . . . . . . . 8  |-  ( c  u.  { x }
)  e.  _V
5 pwfilem.1 . . . . . . . 8  |-  F  =  ( c  e.  ~P b  |->  ( c  u. 
{ x } ) )
64, 5fnmpti 5372 . . . . . . 7  |-  F  Fn  ~P b
7 dffn4 5457 . . . . . . 7  |-  ( F  Fn  ~P b  <->  F : ~P b -onto-> ran  F )
86, 7mpbi 199 . . . . . 6  |-  F : ~P b -onto-> ran  F
9 fodomfi 7135 . . . . . 6  |-  ( ( ~P b  e.  Fin  /\  F : ~P b -onto-> ran  F )  ->  ran  F  ~<_  ~P b )
108, 9mpan2 652 . . . . 5  |-  ( ~P b  e.  Fin  ->  ran 
F  ~<_  ~P b )
11 domfi 7084 . . . . 5  |-  ( ( ~P b  e.  Fin  /\ 
ran  F  ~<_  ~P b
)  ->  ran  F  e. 
Fin )
1210, 11mpdan 649 . . . 4  |-  ( ~P b  e.  Fin  ->  ran 
F  e.  Fin )
13 eldifi 3298 . . . . . . . . 9  |-  ( d  e.  ( ~P (
b  u.  { x } )  \  ~P b )  ->  d  e.  ~P ( b  u. 
{ x } ) )
143elpwun 4567 . . . . . . . . 9  |-  ( d  e.  ~P ( b  u.  { x }
)  <->  ( d  \  { x } )  e.  ~P b )
1513, 14sylib 188 . . . . . . . 8  |-  ( d  e.  ( ~P (
b  u.  { x } )  \  ~P b )  ->  (
d  \  { x } )  e.  ~P b )
16 undif1 3529 . . . . . . . . 9  |-  ( ( d  \  { x } )  u.  {
x } )  =  ( d  u.  {
x } )
17 elpwunsn 4568 . . . . . . . . . . 11  |-  ( d  e.  ( ~P (
b  u.  { x } )  \  ~P b )  ->  x  e.  d )
1817snssd 3760 . . . . . . . . . 10  |-  ( d  e.  ( ~P (
b  u.  { x } )  \  ~P b )  ->  { x }  C_  d )
19 ssequn2 3348 . . . . . . . . . 10  |-  ( { x }  C_  d  <->  ( d  u.  { x } )  =  d )
2018, 19sylib 188 . . . . . . . . 9  |-  ( d  e.  ( ~P (
b  u.  { x } )  \  ~P b )  ->  (
d  u.  { x } )  =  d )
2116, 20syl5req 2328 . . . . . . . 8  |-  ( d  e.  ( ~P (
b  u.  { x } )  \  ~P b )  ->  d  =  ( ( d 
\  { x }
)  u.  { x } ) )
22 uneq1 3322 . . . . . . . . . 10  |-  ( c  =  ( d  \  { x } )  ->  ( c  u. 
{ x } )  =  ( ( d 
\  { x }
)  u.  { x } ) )
2322eqeq2d 2294 . . . . . . . . 9  |-  ( c  =  ( d  \  { x } )  ->  ( d  =  ( c  u.  {
x } )  <->  d  =  ( ( d  \  { x } )  u.  { x }
) ) )
2423rspcev 2884 . . . . . . . 8  |-  ( ( ( d  \  {
x } )  e. 
~P b  /\  d  =  ( ( d 
\  { x }
)  u.  { x } ) )  ->  E. c  e.  ~P  b d  =  ( c  u.  { x } ) )
2515, 21, 24syl2anc 642 . . . . . . 7  |-  ( d  e.  ( ~P (
b  u.  { x } )  \  ~P b )  ->  E. c  e.  ~P  b d  =  ( c  u.  {
x } ) )
265, 4elrnmpti 4930 . . . . . . 7  |-  ( d  e.  ran  F  <->  E. c  e.  ~P  b d  =  ( c  u.  {
x } ) )
2725, 26sylibr 203 . . . . . 6  |-  ( d  e.  ( ~P (
b  u.  { x } )  \  ~P b )  ->  d  e.  ran  F )
2827ssriv 3184 . . . . 5  |-  ( ~P ( b  u.  {
x } )  \  ~P b )  C_  ran  F
29 ssdomg 6907 . . . . 5  |-  ( ran 
F  e.  Fin  ->  ( ( ~P ( b  u.  { x }
)  \  ~P b
)  C_  ran  F  -> 
( ~P ( b  u.  { x }
)  \  ~P b
)  ~<_  ran  F )
)
3012, 28, 29ee10 1366 . . . 4  |-  ( ~P b  e.  Fin  ->  ( ~P ( b  u. 
{ x } ) 
\  ~P b )  ~<_  ran  F )
31 domfi 7084 . . . 4  |-  ( ( ran  F  e.  Fin  /\  ( ~P ( b  u.  { x }
)  \  ~P b
)  ~<_  ran  F )  ->  ( ~P ( b  u.  { x }
)  \  ~P b
)  e.  Fin )
3212, 30, 31syl2anc 642 . . 3  |-  ( ~P b  e.  Fin  ->  ( ~P ( b  u. 
{ x } ) 
\  ~P b )  e.  Fin )
33 unfi 7124 . . 3  |-  ( ( ( ~P ( b  u.  { x }
)  \  ~P b
)  e.  Fin  /\  ~P b  e.  Fin )  ->  ( ( ~P ( b  u.  {
x } )  \  ~P b )  u.  ~P b )  e.  Fin )
3432, 33mpancom 650 . 2  |-  ( ~P b  e.  Fin  ->  ( ( ~P ( b  u.  { x }
)  \  ~P b
)  u.  ~P b
)  e.  Fin )
351, 34syl5eqel 2367 1  |-  ( ~P b  e.  Fin  ->  ~P ( b  u.  {
x } )  e. 
Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684   E.wrex 2544    \ cdif 3149    u. cun 3150    C_ wss 3152   ~Pcpw 3625   {csn 3640   class class class wbr 4023    e. cmpt 4077   ran crn 4690    Fn wfn 5250   -onto->wfo 5253    ~<_ cdom 6861   Fincfn 6863
This theorem is referenced by:  pwfi  7151
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-fin 6867
  Copyright terms: Public domain W3C validator