MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfilem Structured version   Unicode version

Theorem pwfilem 7393
Description: Lemma for pwfi 7394. (Contributed by NM, 26-Mar-2007.)
Hypothesis
Ref Expression
pwfilem.1  |-  F  =  ( c  e.  ~P b  |->  ( c  u. 
{ x } ) )
Assertion
Ref Expression
pwfilem  |-  ( ~P b  e.  Fin  ->  ~P ( b  u.  {
x } )  e. 
Fin )
Distinct variable groups:    b, c    x, c
Allowed substitution hints:    F( x, b, c)

Proof of Theorem pwfilem
Dummy variable  d is distinct from all other variables.
StepHypRef Expression
1 pwundif 4482 . 2  |-  ~P (
b  u.  { x } )  =  ( ( ~P ( b  u.  { x }
)  \  ~P b
)  u.  ~P b
)
2 vex 2951 . . . . . . . . 9  |-  c  e. 
_V
3 snex 4397 . . . . . . . . 9  |-  { x }  e.  _V
42, 3unex 4699 . . . . . . . 8  |-  ( c  u.  { x }
)  e.  _V
5 pwfilem.1 . . . . . . . 8  |-  F  =  ( c  e.  ~P b  |->  ( c  u. 
{ x } ) )
64, 5fnmpti 5565 . . . . . . 7  |-  F  Fn  ~P b
7 dffn4 5651 . . . . . . 7  |-  ( F  Fn  ~P b  <->  F : ~P b -onto-> ran  F )
86, 7mpbi 200 . . . . . 6  |-  F : ~P b -onto-> ran  F
9 fodomfi 7377 . . . . . 6  |-  ( ( ~P b  e.  Fin  /\  F : ~P b -onto-> ran  F )  ->  ran  F  ~<_  ~P b )
108, 9mpan2 653 . . . . 5  |-  ( ~P b  e.  Fin  ->  ran 
F  ~<_  ~P b )
11 domfi 7322 . . . . 5  |-  ( ( ~P b  e.  Fin  /\ 
ran  F  ~<_  ~P b
)  ->  ran  F  e. 
Fin )
1210, 11mpdan 650 . . . 4  |-  ( ~P b  e.  Fin  ->  ran 
F  e.  Fin )
13 eldifi 3461 . . . . . . . . 9  |-  ( d  e.  ( ~P (
b  u.  { x } )  \  ~P b )  ->  d  e.  ~P ( b  u. 
{ x } ) )
143elpwun 4748 . . . . . . . . 9  |-  ( d  e.  ~P ( b  u.  { x }
)  <->  ( d  \  { x } )  e.  ~P b )
1513, 14sylib 189 . . . . . . . 8  |-  ( d  e.  ( ~P (
b  u.  { x } )  \  ~P b )  ->  (
d  \  { x } )  e.  ~P b )
16 undif1 3695 . . . . . . . . 9  |-  ( ( d  \  { x } )  u.  {
x } )  =  ( d  u.  {
x } )
17 elpwunsn 4749 . . . . . . . . . . 11  |-  ( d  e.  ( ~P (
b  u.  { x } )  \  ~P b )  ->  x  e.  d )
1817snssd 3935 . . . . . . . . . 10  |-  ( d  e.  ( ~P (
b  u.  { x } )  \  ~P b )  ->  { x }  C_  d )
19 ssequn2 3512 . . . . . . . . . 10  |-  ( { x }  C_  d  <->  ( d  u.  { x } )  =  d )
2018, 19sylib 189 . . . . . . . . 9  |-  ( d  e.  ( ~P (
b  u.  { x } )  \  ~P b )  ->  (
d  u.  { x } )  =  d )
2116, 20syl5req 2480 . . . . . . . 8  |-  ( d  e.  ( ~P (
b  u.  { x } )  \  ~P b )  ->  d  =  ( ( d 
\  { x }
)  u.  { x } ) )
22 uneq1 3486 . . . . . . . . . 10  |-  ( c  =  ( d  \  { x } )  ->  ( c  u. 
{ x } )  =  ( ( d 
\  { x }
)  u.  { x } ) )
2322eqeq2d 2446 . . . . . . . . 9  |-  ( c  =  ( d  \  { x } )  ->  ( d  =  ( c  u.  {
x } )  <->  d  =  ( ( d  \  { x } )  u.  { x }
) ) )
2423rspcev 3044 . . . . . . . 8  |-  ( ( ( d  \  {
x } )  e. 
~P b  /\  d  =  ( ( d 
\  { x }
)  u.  { x } ) )  ->  E. c  e.  ~P  b d  =  ( c  u.  { x } ) )
2515, 21, 24syl2anc 643 . . . . . . 7  |-  ( d  e.  ( ~P (
b  u.  { x } )  \  ~P b )  ->  E. c  e.  ~P  b d  =  ( c  u.  {
x } ) )
265, 4elrnmpti 5113 . . . . . . 7  |-  ( d  e.  ran  F  <->  E. c  e.  ~P  b d  =  ( c  u.  {
x } ) )
2725, 26sylibr 204 . . . . . 6  |-  ( d  e.  ( ~P (
b  u.  { x } )  \  ~P b )  ->  d  e.  ran  F )
2827ssriv 3344 . . . . 5  |-  ( ~P ( b  u.  {
x } )  \  ~P b )  C_  ran  F
29 ssdomg 7145 . . . . 5  |-  ( ran 
F  e.  Fin  ->  ( ( ~P ( b  u.  { x }
)  \  ~P b
)  C_  ran  F  -> 
( ~P ( b  u.  { x }
)  \  ~P b
)  ~<_  ran  F )
)
3012, 28, 29ee10 1385 . . . 4  |-  ( ~P b  e.  Fin  ->  ( ~P ( b  u. 
{ x } ) 
\  ~P b )  ~<_  ran  F )
31 domfi 7322 . . . 4  |-  ( ( ran  F  e.  Fin  /\  ( ~P ( b  u.  { x }
)  \  ~P b
)  ~<_  ran  F )  ->  ( ~P ( b  u.  { x }
)  \  ~P b
)  e.  Fin )
3212, 30, 31syl2anc 643 . . 3  |-  ( ~P b  e.  Fin  ->  ( ~P ( b  u. 
{ x } ) 
\  ~P b )  e.  Fin )
33 unfi 7366 . . 3  |-  ( ( ( ~P ( b  u.  { x }
)  \  ~P b
)  e.  Fin  /\  ~P b  e.  Fin )  ->  ( ( ~P ( b  u.  {
x } )  \  ~P b )  u.  ~P b )  e.  Fin )
3432, 33mpancom 651 . 2  |-  ( ~P b  e.  Fin  ->  ( ( ~P ( b  u.  { x }
)  \  ~P b
)  u.  ~P b
)  e.  Fin )
351, 34syl5eqel 2519 1  |-  ( ~P b  e.  Fin  ->  ~P ( b  u.  {
x } )  e. 
Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1652    e. wcel 1725   E.wrex 2698    \ cdif 3309    u. cun 3310    C_ wss 3312   ~Pcpw 3791   {csn 3806   class class class wbr 4204    e. cmpt 4258   ran crn 4871    Fn wfn 5441   -onto->wfo 5444    ~<_ cdom 7099   Fincfn 7101
This theorem is referenced by:  pwfi  7394
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-en 7102  df-dom 7103  df-fin 7105
  Copyright terms: Public domain W3C validator