MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfseq Unicode version

Theorem pwfseq 8302
Description: The powerset of a Dedekind-infinite set does not inject into the set of finite sequences. The proof is due to Halbeisen and Shelah. Proposition 1.7 of [KanamoriPincus] p. 418. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
pwfseq  |-  ( om  ~<_  A  ->  -.  ~P A  ~<_  U_ n  e.  om  ( A  ^m  n ) )
Distinct variable group:    A, n

Proof of Theorem pwfseq
Dummy variables  f 
b  g  h  k  m  p  r  s  t  u  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldom 6885 . . 3  |-  Rel  ~<_
21brrelex2i 4746 . 2  |-  ( om  ~<_  A  ->  A  e.  _V )
3 domeng 6892 . . 3  |-  ( A  e.  _V  ->  ( om 
~<_  A  <->  E. t ( om 
~~  t  /\  t  C_  A ) ) )
4 bren 6887 . . . . . 6  |-  ( om 
~~  t  <->  E. h  h : om -1-1-onto-> t )
5 harcl 7291 . . . . . . . . . 10  |-  (har `  ~P A )  e.  On
6 infxpenc2 7665 . . . . . . . . . 10  |-  ( (har
`  ~P A )  e.  On  ->  E. m A. b  e.  (har `  ~P A ) ( om  C_  b  ->  ( m `  b ) : ( b  X.  b ) -1-1-onto-> b ) )
75, 6ax-mp 8 . . . . . . . . 9  |-  E. m A. b  e.  (har `  ~P A ) ( om  C_  b  ->  ( m `  b ) : ( b  X.  b ) -1-1-onto-> b )
8 simpr 447 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( h : om -1-1-onto-> t  /\  t  C_  A )  /\  A. b  e.  (har `  ~P A ) ( om  C_  b  ->  ( m `
 b ) : ( b  X.  b
)
-1-1-onto-> b ) )  /\  g : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n ) )  ->  g : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n
) )
9 oveq2 5882 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  k  ->  ( A  ^m  n )  =  ( A  ^m  k
) )
109cbviunv 3957 . . . . . . . . . . . . . . . . 17  |-  U_ n  e.  om  ( A  ^m  n )  =  U_ k  e.  om  ( A  ^m  k )
11 f1eq3 5450 . . . . . . . . . . . . . . . . 17  |-  ( U_ n  e.  om  ( A  ^m  n )  = 
U_ k  e.  om  ( A  ^m  k
)  ->  ( g : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n )  <->  g : ~P A -1-1-> U_ k  e.  om  ( A  ^m  k
) ) )
1210, 11ax-mp 8 . . . . . . . . . . . . . . . 16  |-  ( g : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n )  <->  g : ~P A -1-1-> U_ k  e.  om  ( A  ^m  k
) )
138, 12sylib 188 . . . . . . . . . . . . . . 15  |-  ( ( ( ( h : om -1-1-onto-> t  /\  t  C_  A )  /\  A. b  e.  (har `  ~P A ) ( om  C_  b  ->  ( m `
 b ) : ( b  X.  b
)
-1-1-onto-> b ) )  /\  g : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n ) )  ->  g : ~P A -1-1-> U_ k  e.  om  ( A  ^m  k
) )
14 simpllr 735 . . . . . . . . . . . . . . 15  |-  ( ( ( ( h : om -1-1-onto-> t  /\  t  C_  A )  /\  A. b  e.  (har `  ~P A ) ( om  C_  b  ->  ( m `
 b ) : ( b  X.  b
)
-1-1-onto-> b ) )  /\  g : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n ) )  ->  t  C_  A
)
15 simplll 734 . . . . . . . . . . . . . . 15  |-  ( ( ( ( h : om -1-1-onto-> t  /\  t  C_  A )  /\  A. b  e.  (har `  ~P A ) ( om  C_  b  ->  ( m `
 b ) : ( b  X.  b
)
-1-1-onto-> b ) )  /\  g : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n ) )  ->  h : om -1-1-onto-> t
)
16 biid 227 . . . . . . . . . . . . . . 15  |-  ( ( ( u  C_  A  /\  r  C_  ( u  X.  u )  /\  r  We  u )  /\  om  ~<_  u )  <->  ( (
u  C_  A  /\  r  C_  ( u  X.  u )  /\  r  We  u )  /\  om  ~<_  u ) )
17 simplr 731 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( h : om -1-1-onto-> t  /\  t  C_  A )  /\  A. b  e.  (har `  ~P A ) ( om  C_  b  ->  ( m `
 b ) : ( b  X.  b
)
-1-1-onto-> b ) )  /\  g : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n ) )  ->  A. b  e.  (har
`  ~P A ) ( om  C_  b  ->  ( m `  b
) : ( b  X.  b ) -1-1-onto-> b ) )
18 sseq2 3213 . . . . . . . . . . . . . . . . . 18  |-  ( b  =  w  ->  ( om  C_  b  <->  om  C_  w
) )
19 fveq2 5541 . . . . . . . . . . . . . . . . . . . 20  |-  ( b  =  w  ->  (
m `  b )  =  ( m `  w ) )
20 f1oeq1 5479 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( m `  b )  =  ( m `  w )  ->  (
( m `  b
) : ( b  X.  b ) -1-1-onto-> b  <->  ( m `  w ) : ( b  X.  b ) -1-1-onto-> b ) )
2119, 20syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( b  =  w  ->  (
( m `  b
) : ( b  X.  b ) -1-1-onto-> b  <->  ( m `  w ) : ( b  X.  b ) -1-1-onto-> b ) )
22 xpeq12 4724 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( b  =  w  /\  b  =  w )  ->  ( b  X.  b
)  =  ( w  X.  w ) )
2322anidms 626 . . . . . . . . . . . . . . . . . . . 20  |-  ( b  =  w  ->  (
b  X.  b )  =  ( w  X.  w ) )
24 f1oeq2 5480 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( b  X.  b )  =  ( w  X.  w )  ->  (
( m `  w
) : ( b  X.  b ) -1-1-onto-> b  <->  ( m `  w ) : ( w  X.  w ) -1-1-onto-> b ) )
2523, 24syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( b  =  w  ->  (
( m `  w
) : ( b  X.  b ) -1-1-onto-> b  <->  ( m `  w ) : ( w  X.  w ) -1-1-onto-> b ) )
26 f1oeq3 5481 . . . . . . . . . . . . . . . . . . 19  |-  ( b  =  w  ->  (
( m `  w
) : ( w  X.  w ) -1-1-onto-> b  <->  ( m `  w ) : ( w  X.  w ) -1-1-onto-> w ) )
2721, 25, 263bitrd 270 . . . . . . . . . . . . . . . . . 18  |-  ( b  =  w  ->  (
( m `  b
) : ( b  X.  b ) -1-1-onto-> b  <->  ( m `  w ) : ( w  X.  w ) -1-1-onto-> w ) )
2818, 27imbi12d 311 . . . . . . . . . . . . . . . . 17  |-  ( b  =  w  ->  (
( om  C_  b  ->  ( m `  b
) : ( b  X.  b ) -1-1-onto-> b )  <-> 
( om  C_  w  ->  ( m `  w
) : ( w  X.  w ) -1-1-onto-> w ) ) )
2928cbvralv 2777 . . . . . . . . . . . . . . . 16  |-  ( A. b  e.  (har `  ~P A ) ( om  C_  b  ->  ( m `
 b ) : ( b  X.  b
)
-1-1-onto-> b )  <->  A. w  e.  (har `  ~P A ) ( om  C_  w  ->  ( m `  w
) : ( w  X.  w ) -1-1-onto-> w ) )
3017, 29sylib 188 . . . . . . . . . . . . . . 15  |-  ( ( ( ( h : om -1-1-onto-> t  /\  t  C_  A )  /\  A. b  e.  (har `  ~P A ) ( om  C_  b  ->  ( m `
 b ) : ( b  X.  b
)
-1-1-onto-> b ) )  /\  g : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n ) )  ->  A. w  e.  (har
`  ~P A ) ( om  C_  w  ->  ( m `  w
) : ( w  X.  w ) -1-1-onto-> w ) )
31 eqid 2296 . . . . . . . . . . . . . . 15  |- OrdIso ( r ,  u )  = OrdIso
( r ,  u
)
32 eqid 2296 . . . . . . . . . . . . . . 15  |-  ( s  e.  dom OrdIso ( r ,  u ) ,  z  e.  dom OrdIso ( r ,  u )  |->  <. (OrdIso ( r ,  u
) `  s ) ,  (OrdIso ( r ,  u ) `  z
) >. )  =  ( s  e.  dom OrdIso ( r ,  u ) ,  z  e.  dom OrdIso ( r ,  u )  |->  <.
(OrdIso ( r ,  u ) `  s
) ,  (OrdIso (
r ,  u ) `
 z ) >.
)
33 eqid 2296 . . . . . . . . . . . . . . 15  |-  ( (OrdIso ( r ,  u
)  o.  ( m `
 dom OrdIso ( r ,  u ) ) )  o.  `' ( s  e.  dom OrdIso ( r ,  u ) ,  z  e.  dom OrdIso ( r ,  u )  |->  <. (OrdIso ( r ,  u
) `  s ) ,  (OrdIso ( r ,  u ) `  z
) >. ) )  =  ( (OrdIso ( r ,  u )  o.  ( m `  dom OrdIso ( r ,  u ) ) )  o.  `' ( s  e.  dom OrdIso ( r ,  u ) ,  z  e.  dom OrdIso ( r ,  u ) 
|->  <. (OrdIso ( r ,  u ) `  s ) ,  (OrdIso ( r ,  u
) `  z ) >. ) )
34 eqid 2296 . . . . . . . . . . . . . . 15  |- seq𝜔 ( ( p  e. 
_V ,  f  e. 
_V  |->  ( x  e.  ( u  ^m  suc  p )  |->  ( ( f `  ( x  |`  p ) ) ( (OrdIso ( r ,  u )  o.  (
m `  dom OrdIso ( r ,  u ) ) )  o.  `' ( s  e.  dom OrdIso ( r ,  u ) ,  z  e.  dom OrdIso ( r ,  u )  |->  <.
(OrdIso ( r ,  u ) `  s
) ,  (OrdIso (
r ,  u ) `
 z ) >.
) ) ( x `
 p ) ) ) ) ,  { <.
(/) ,  (OrdIso (
r ,  u ) `
 (/) ) >. } )  = seq𝜔 ( ( p  e. 
_V ,  f  e. 
_V  |->  ( x  e.  ( u  ^m  suc  p )  |->  ( ( f `  ( x  |`  p ) ) ( (OrdIso ( r ,  u )  o.  (
m `  dom OrdIso ( r ,  u ) ) )  o.  `' ( s  e.  dom OrdIso ( r ,  u ) ,  z  e.  dom OrdIso ( r ,  u )  |->  <.
(OrdIso ( r ,  u ) `  s
) ,  (OrdIso (
r ,  u ) `
 z ) >.
) ) ( x `
 p ) ) ) ) ,  { <.
(/) ,  (OrdIso (
r ,  u ) `
 (/) ) >. } )
35 oveq2 5882 . . . . . . . . . . . . . . . . 17  |-  ( n  =  k  ->  (
u  ^m  n )  =  ( u  ^m  k ) )
3635cbviunv 3957 . . . . . . . . . . . . . . . 16  |-  U_ n  e.  om  ( u  ^m  n )  =  U_ k  e.  om  (
u  ^m  k )
37 mpteq1 4116 . . . . . . . . . . . . . . . 16  |-  ( U_ n  e.  om  (
u  ^m  n )  =  U_ k  e.  om  ( u  ^m  k
)  ->  ( y  e.  U_ n  e.  om  ( u  ^m  n
)  |->  <. dom  y , 
( (seq𝜔 ( ( p  e. 
_V ,  f  e. 
_V  |->  ( x  e.  ( u  ^m  suc  p )  |->  ( ( f `  ( x  |`  p ) ) ( (OrdIso ( r ,  u )  o.  (
m `  dom OrdIso ( r ,  u ) ) )  o.  `' ( s  e.  dom OrdIso ( r ,  u ) ,  z  e.  dom OrdIso ( r ,  u )  |->  <.
(OrdIso ( r ,  u ) `  s
) ,  (OrdIso (
r ,  u ) `
 z ) >.
) ) ( x `
 p ) ) ) ) ,  { <.
(/) ,  (OrdIso (
r ,  u ) `
 (/) ) >. } ) `
 dom  y ) `  y ) >. )  =  ( y  e. 
U_ k  e.  om  ( u  ^m  k
)  |->  <. dom  y , 
( (seq𝜔 ( ( p  e. 
_V ,  f  e. 
_V  |->  ( x  e.  ( u  ^m  suc  p )  |->  ( ( f `  ( x  |`  p ) ) ( (OrdIso ( r ,  u )  o.  (
m `  dom OrdIso ( r ,  u ) ) )  o.  `' ( s  e.  dom OrdIso ( r ,  u ) ,  z  e.  dom OrdIso ( r ,  u )  |->  <.
(OrdIso ( r ,  u ) `  s
) ,  (OrdIso (
r ,  u ) `
 z ) >.
) ) ( x `
 p ) ) ) ) ,  { <.
(/) ,  (OrdIso (
r ,  u ) `
 (/) ) >. } ) `
 dom  y ) `  y ) >. )
)
3836, 37ax-mp 8 . . . . . . . . . . . . . . 15  |-  ( y  e.  U_ n  e. 
om  ( u  ^m  n )  |->  <. dom  y ,  ( (seq𝜔 ( ( p  e.  _V , 
f  e.  _V  |->  ( x  e.  ( u  ^m  suc  p ) 
|->  ( ( f `  ( x  |`  p ) ) ( (OrdIso (
r ,  u )  o.  ( m `  dom OrdIso ( r ,  u
) ) )  o.  `' ( s  e. 
dom OrdIso ( r ,  u
) ,  z  e. 
dom OrdIso ( r ,  u
)  |->  <. (OrdIso ( r ,  u ) `  s ) ,  (OrdIso ( r ,  u
) `  z ) >. ) ) ( x `
 p ) ) ) ) ,  { <.
(/) ,  (OrdIso (
r ,  u ) `
 (/) ) >. } ) `
 dom  y ) `  y ) >. )  =  ( y  e. 
U_ k  e.  om  ( u  ^m  k
)  |->  <. dom  y , 
( (seq𝜔 ( ( p  e. 
_V ,  f  e. 
_V  |->  ( x  e.  ( u  ^m  suc  p )  |->  ( ( f `  ( x  |`  p ) ) ( (OrdIso ( r ,  u )  o.  (
m `  dom OrdIso ( r ,  u ) ) )  o.  `' ( s  e.  dom OrdIso ( r ,  u ) ,  z  e.  dom OrdIso ( r ,  u )  |->  <.
(OrdIso ( r ,  u ) `  s
) ,  (OrdIso (
r ,  u ) `
 z ) >.
) ) ( x `
 p ) ) ) ) ,  { <.
(/) ,  (OrdIso (
r ,  u ) `
 (/) ) >. } ) `
 dom  y ) `  y ) >. )
39 eqid 2296 . . . . . . . . . . . . . . 15  |-  ( x  e.  om ,  y  e.  u  |->  <. (OrdIso ( r ,  u
) `  x ) ,  y >. )  =  ( x  e. 
om ,  y  e.  u  |->  <. (OrdIso ( r ,  u ) `  x ) ,  y
>. )
40 eqid 2296 . . . . . . . . . . . . . . 15  |-  ( ( ( (OrdIso ( r ,  u )  o.  ( m `  dom OrdIso ( r ,  u ) ) )  o.  `' ( s  e.  dom OrdIso ( r ,  u ) ,  z  e.  dom OrdIso ( r ,  u ) 
|->  <. (OrdIso ( r ,  u ) `  s ) ,  (OrdIso ( r ,  u
) `  z ) >. ) )  o.  (
x  e.  om , 
y  e.  u  |->  <.
(OrdIso ( r ,  u ) `  x
) ,  y >.
) )  o.  (
y  e.  U_ n  e.  om  ( u  ^m  n )  |->  <. dom  y ,  ( (seq𝜔 ( ( p  e.  _V , 
f  e.  _V  |->  ( x  e.  ( u  ^m  suc  p ) 
|->  ( ( f `  ( x  |`  p ) ) ( (OrdIso (
r ,  u )  o.  ( m `  dom OrdIso ( r ,  u
) ) )  o.  `' ( s  e. 
dom OrdIso ( r ,  u
) ,  z  e. 
dom OrdIso ( r ,  u
)  |->  <. (OrdIso ( r ,  u ) `  s ) ,  (OrdIso ( r ,  u
) `  z ) >. ) ) ( x `
 p ) ) ) ) ,  { <.
(/) ,  (OrdIso (
r ,  u ) `
 (/) ) >. } ) `
 dom  y ) `  y ) >. )
)  =  ( ( ( (OrdIso ( r ,  u )  o.  ( m `  dom OrdIso ( r ,  u ) ) )  o.  `' ( s  e.  dom OrdIso ( r ,  u ) ,  z  e.  dom OrdIso ( r ,  u ) 
|->  <. (OrdIso ( r ,  u ) `  s ) ,  (OrdIso ( r ,  u
) `  z ) >. ) )  o.  (
x  e.  om , 
y  e.  u  |->  <.
(OrdIso ( r ,  u ) `  x
) ,  y >.
) )  o.  (
y  e.  U_ n  e.  om  ( u  ^m  n )  |->  <. dom  y ,  ( (seq𝜔 ( ( p  e.  _V , 
f  e.  _V  |->  ( x  e.  ( u  ^m  suc  p ) 
|->  ( ( f `  ( x  |`  p ) ) ( (OrdIso (
r ,  u )  o.  ( m `  dom OrdIso ( r ,  u
) ) )  o.  `' ( s  e. 
dom OrdIso ( r ,  u
) ,  z  e. 
dom OrdIso ( r ,  u
)  |->  <. (OrdIso ( r ,  u ) `  s ) ,  (OrdIso ( r ,  u
) `  z ) >. ) ) ( x `
 p ) ) ) ) ,  { <.
(/) ,  (OrdIso (
r ,  u ) `
 (/) ) >. } ) `
 dom  y ) `  y ) >. )
)
4113, 14, 15, 16, 30, 31, 32, 33, 34, 38, 39, 40pwfseqlem5 8301 . . . . . . . . . . . . . 14  |-  -.  (
( ( h : om -1-1-onto-> t  /\  t  C_  A )  /\  A. b  e.  (har `  ~P A ) ( om  C_  b  ->  ( m `
 b ) : ( b  X.  b
)
-1-1-onto-> b ) )  /\  g : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n ) )
4241imnani 412 . . . . . . . . . . . . 13  |-  ( ( ( h : om -1-1-onto-> t  /\  t  C_  A )  /\  A. b  e.  (har `  ~P A ) ( om  C_  b  ->  ( m `  b
) : ( b  X.  b ) -1-1-onto-> b ) )  ->  -.  g : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n ) )
4342nexdv 1869 . . . . . . . . . . . 12  |-  ( ( ( h : om -1-1-onto-> t  /\  t  C_  A )  /\  A. b  e.  (har `  ~P A ) ( om  C_  b  ->  ( m `  b
) : ( b  X.  b ) -1-1-onto-> b ) )  ->  -.  E. g 
g : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n ) )
44 brdomi 6889 . . . . . . . . . . . 12  |-  ( ~P A  ~<_  U_ n  e.  om  ( A  ^m  n
)  ->  E. g 
g : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n ) )
4543, 44nsyl 113 . . . . . . . . . . 11  |-  ( ( ( h : om -1-1-onto-> t  /\  t  C_  A )  /\  A. b  e.  (har `  ~P A ) ( om  C_  b  ->  ( m `  b
) : ( b  X.  b ) -1-1-onto-> b ) )  ->  -.  ~P A  ~<_  U_ n  e.  om  ( A  ^m  n ) )
4645ex 423 . . . . . . . . . 10  |-  ( ( h : om -1-1-onto-> t  /\  t  C_  A )  ->  ( A. b  e.  (har `  ~P A ) ( om  C_  b  ->  ( m `  b ) : ( b  X.  b ) -1-1-onto-> b )  ->  -.  ~P A  ~<_  U_ n  e. 
om  ( A  ^m  n ) ) )
4746exlimdv 1626 . . . . . . . . 9  |-  ( ( h : om -1-1-onto-> t  /\  t  C_  A )  ->  ( E. m A. b  e.  (har `  ~P A ) ( om  C_  b  ->  ( m `  b
) : ( b  X.  b ) -1-1-onto-> b )  ->  -.  ~P A  ~<_  U_ n  e.  om  ( A  ^m  n ) ) )
487, 47mpi 16 . . . . . . . 8  |-  ( ( h : om -1-1-onto-> t  /\  t  C_  A )  ->  -.  ~P A  ~<_  U_ n  e. 
om  ( A  ^m  n ) )
4948ex 423 . . . . . . 7  |-  ( h : om -1-1-onto-> t  ->  ( t 
C_  A  ->  -.  ~P A  ~<_  U_ n  e. 
om  ( A  ^m  n ) ) )
5049exlimiv 1624 . . . . . 6  |-  ( E. h  h : om -1-1-onto-> t  ->  ( t  C_  A  ->  -.  ~P A  ~<_  U_ n  e.  om  ( A  ^m  n ) ) )
514, 50sylbi 187 . . . . 5  |-  ( om 
~~  t  ->  (
t  C_  A  ->  -. 
~P A  ~<_  U_ n  e.  om  ( A  ^m  n ) ) )
5251imp 418 . . . 4  |-  ( ( om  ~~  t  /\  t  C_  A )  ->  -.  ~P A  ~<_  U_ n  e.  om  ( A  ^m  n ) )
5352exlimiv 1624 . . 3  |-  ( E. t ( om  ~~  t  /\  t  C_  A
)  ->  -.  ~P A  ~<_  U_ n  e.  om  ( A  ^m  n ) )
543, 53syl6bi 219 . 2  |-  ( A  e.  _V  ->  ( om 
~<_  A  ->  -.  ~P A  ~<_  U_ n  e.  om  ( A  ^m  n ) ) )
552, 54mpcom 32 1  |-  ( om  ~<_  A  ->  -.  ~P A  ~<_  U_ n  e.  om  ( A  ^m  n ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1531    = wceq 1632    e. wcel 1696   A.wral 2556   _Vcvv 2801    C_ wss 3165   (/)c0 3468   ~Pcpw 3638   {csn 3653   <.cop 3656   U_ciun 3921   class class class wbr 4039    e. cmpt 4093    We wwe 4367   Oncon0 4408   suc csuc 4410   omcom 4672    X. cxp 4703   `'ccnv 4704   dom cdm 4705    |` cres 4707    o. ccom 4709   -1-1->wf1 5268   -1-1-onto->wf1o 5270   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876  seq𝜔cseqom 6475    ^m cmap 6788    ~~ cen 6876    ~<_ cdom 6877  OrdIsocoi 7240  harchar 7286
This theorem is referenced by:  pwxpndom2  8303
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-seqom 6476  df-1o 6495  df-2o 6496  df-oadd 6499  df-omul 6500  df-oexp 6501  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-oi 7241  df-har 7288  df-cnf 7379  df-card 7588
  Copyright terms: Public domain W3C validator