MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfseqlem3 Unicode version

Theorem pwfseqlem3 8369
Description: Lemma for pwfseq 8373. Using the construction  D from pwfseqlem1 8367, produce a function  F that maps any well-ordered infinite set to an element outside the set. (Contributed by Mario Carneiro, 31-May-2015.)
Hypotheses
Ref Expression
pwfseqlem4.g  |-  ( ph  ->  G : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n ) )
pwfseqlem4.x  |-  ( ph  ->  X  C_  A )
pwfseqlem4.h  |-  ( ph  ->  H : om -1-1-onto-> X )
pwfseqlem4.ps  |-  ( ps  <->  ( ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x )  /\  om  ~<_  x ) )
pwfseqlem4.k  |-  ( (
ph  /\  ps )  ->  K : U_ n  e.  om  ( x  ^m  n ) -1-1-> x )
pwfseqlem4.d  |-  D  =  ( G `  {
w  e.  x  |  ( ( `' K `  w )  e.  ran  G  /\  -.  w  e.  ( `' G `  ( `' K `  w ) ) ) } )
pwfseqlem4.f  |-  F  =  ( x  e.  _V ,  r  e.  _V  |->  if ( x  e.  Fin ,  ( H `  ( card `  x ) ) ,  ( D `  |^| { z  e.  om  |  -.  ( D `  z )  e.  x } ) ) )
Assertion
Ref Expression
pwfseqlem3  |-  ( (
ph  /\  ps )  ->  ( x F r )  e.  ( A 
\  x ) )
Distinct variable groups:    n, r, w, x, z    D, n, z    w, G    w, K    H, r, x, z    ph, n, r, x, z    ps, n, z    A, n, r, x, z
Allowed substitution hints:    ph( w)    ps( x, w, r)    A( w)    D( x, w, r)    F( x, z, w, n, r)    G( x, z, n, r)    H( w, n)    K( x, z, n, r)    X( x, z, w, n, r)

Proof of Theorem pwfseqlem3
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 vex 2867 . . . 4  |-  x  e. 
_V
2 vex 2867 . . . 4  |-  r  e. 
_V
3 fvex 5619 . . . . 5  |-  ( H `
 ( card `  x
) )  e.  _V
4 fvex 5619 . . . . 5  |-  ( D `
 |^| { z  e. 
om  |  -.  ( D `  z )  e.  x } )  e. 
_V
53, 4ifex 3699 . . . 4  |-  if ( x  e.  Fin , 
( H `  ( card `  x ) ) ,  ( D `  |^| { z  e.  om  |  -.  ( D `  z )  e.  x } ) )  e. 
_V
6 pwfseqlem4.f . . . . 5  |-  F  =  ( x  e.  _V ,  r  e.  _V  |->  if ( x  e.  Fin ,  ( H `  ( card `  x ) ) ,  ( D `  |^| { z  e.  om  |  -.  ( D `  z )  e.  x } ) ) )
76ovmpt4g 6054 . . . 4  |-  ( ( x  e.  _V  /\  r  e.  _V  /\  if ( x  e.  Fin ,  ( H `  ( card `  x ) ) ,  ( D `  |^| { z  e.  om  |  -.  ( D `  z )  e.  x } ) )  e. 
_V )  ->  (
x F r )  =  if ( x  e.  Fin ,  ( H `  ( card `  x ) ) ,  ( D `  |^| { z  e.  om  |  -.  ( D `  z
)  e.  x }
) ) )
81, 2, 5, 7mp3an 1277 . . 3  |-  ( x F r )  =  if ( x  e. 
Fin ,  ( H `  ( card `  x
) ) ,  ( D `  |^| { z  e.  om  |  -.  ( D `  z )  e.  x } ) )
9 pwfseqlem4.ps . . . . . . . 8  |-  ( ps  <->  ( ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x )  /\  om  ~<_  x ) )
109simprbi 450 . . . . . . 7  |-  ( ps 
->  om  ~<_  x )
1110adantl 452 . . . . . 6  |-  ( (
ph  /\  ps )  ->  om  ~<_  x )
12 domnsym 7072 . . . . . 6  |-  ( om  ~<_  x  ->  -.  x  ~<  om )
1311, 12syl 15 . . . . 5  |-  ( (
ph  /\  ps )  ->  -.  x  ~<  om )
14 isfinite 7440 . . . . 5  |-  ( x  e.  Fin  <->  x  ~<  om )
1513, 14sylnibr 296 . . . 4  |-  ( (
ph  /\  ps )  ->  -.  x  e.  Fin )
16 iffalse 3648 . . . 4  |-  ( -.  x  e.  Fin  ->  if ( x  e.  Fin ,  ( H `  ( card `  x ) ) ,  ( D `  |^| { z  e.  om  |  -.  ( D `  z )  e.  x } ) )  =  ( D `  |^| { z  e.  om  |  -.  ( D `  z
)  e.  x }
) )
1715, 16syl 15 . . 3  |-  ( (
ph  /\  ps )  ->  if ( x  e. 
Fin ,  ( H `  ( card `  x
) ) ,  ( D `  |^| { z  e.  om  |  -.  ( D `  z )  e.  x } ) )  =  ( D `
 |^| { z  e. 
om  |  -.  ( D `  z )  e.  x } ) )
188, 17syl5eq 2402 . 2  |-  ( (
ph  /\  ps )  ->  ( x F r )  =  ( D `
 |^| { z  e. 
om  |  -.  ( D `  z )  e.  x } ) )
19 pwfseqlem4.g . . . . . . 7  |-  ( ph  ->  G : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n ) )
20 pwfseqlem4.x . . . . . . 7  |-  ( ph  ->  X  C_  A )
21 pwfseqlem4.h . . . . . . 7  |-  ( ph  ->  H : om -1-1-onto-> X )
22 pwfseqlem4.k . . . . . . 7  |-  ( (
ph  /\  ps )  ->  K : U_ n  e.  om  ( x  ^m  n ) -1-1-> x )
23 pwfseqlem4.d . . . . . . 7  |-  D  =  ( G `  {
w  e.  x  |  ( ( `' K `  w )  e.  ran  G  /\  -.  w  e.  ( `' G `  ( `' K `  w ) ) ) } )
2419, 20, 21, 9, 22, 23pwfseqlem1 8367 . . . . . 6  |-  ( (
ph  /\  ps )  ->  D  e.  ( U_ n  e.  om  ( A  ^m  n )  \  U_ n  e.  om  ( x  ^m  n
) ) )
25 eldif 3238 . . . . . 6  |-  ( D  e.  ( U_ n  e.  om  ( A  ^m  n )  \  U_ n  e.  om  (
x  ^m  n )
)  <->  ( D  e. 
U_ n  e.  om  ( A  ^m  n
)  /\  -.  D  e.  U_ n  e.  om  ( x  ^m  n
) ) )
2624, 25sylib 188 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( D  e.  U_ n  e.  om  ( A  ^m  n )  /\  -.  D  e.  U_ n  e.  om  ( x  ^m  n ) ) )
2726simpld 445 . . . 4  |-  ( (
ph  /\  ps )  ->  D  e.  U_ n  e.  om  ( A  ^m  n ) )
28 eliun 3988 . . . 4  |-  ( D  e.  U_ n  e. 
om  ( A  ^m  n )  <->  E. n  e.  om  D  e.  ( A  ^m  n ) )
2927, 28sylib 188 . . 3  |-  ( (
ph  /\  ps )  ->  E. n  e.  om  D  e.  ( A  ^m  n ) )
30 elmapi 6877 . . . . . . . 8  |-  ( D  e.  ( A  ^m  n )  ->  D : n --> A )
3130ad2antll 709 . . . . . . 7  |-  ( ( ( ph  /\  ps )  /\  ( n  e. 
om  /\  D  e.  ( A  ^m  n
) ) )  ->  D : n --> A )
3226simprd 449 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  ->  -.  D  e.  U_ n  e.  om  (
x  ^m  n )
)
3332adantr 451 . . . . . . . . . 10  |-  ( ( ( ph  /\  ps )  /\  ( n  e. 
om  /\  D  e.  ( A  ^m  n
) ) )  ->  -.  D  e.  U_ n  e.  om  ( x  ^m  n ) )
34 ssiun2 4024 . . . . . . . . . . . 12  |-  ( n  e.  om  ->  (
x  ^m  n )  C_ 
U_ n  e.  om  ( x  ^m  n
) )
3534ad2antrl 708 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ps )  /\  ( n  e. 
om  /\  D  e.  ( A  ^m  n
) ) )  -> 
( x  ^m  n
)  C_  U_ n  e. 
om  ( x  ^m  n ) )
3635sseld 3255 . . . . . . . . . 10  |-  ( ( ( ph  /\  ps )  /\  ( n  e. 
om  /\  D  e.  ( A  ^m  n
) ) )  -> 
( D  e.  ( x  ^m  n )  ->  D  e.  U_ n  e.  om  (
x  ^m  n )
) )
3733, 36mtod 168 . . . . . . . . 9  |-  ( ( ( ph  /\  ps )  /\  ( n  e. 
om  /\  D  e.  ( A  ^m  n
) ) )  ->  -.  D  e.  (
x  ^m  n )
)
38 vex 2867 . . . . . . . . . . 11  |-  n  e. 
_V
391, 38elmap 6881 . . . . . . . . . 10  |-  ( D  e.  ( x  ^m  n )  <->  D :
n --> x )
40 ffn 5469 . . . . . . . . . . 11  |-  ( D : n --> A  ->  D  Fn  n )
41 ffnfv 5765 . . . . . . . . . . . 12  |-  ( D : n --> x  <->  ( D  Fn  n  /\  A. z  e.  n  ( D `  z )  e.  x
) )
4241baib 871 . . . . . . . . . . 11  |-  ( D  Fn  n  ->  ( D : n --> x  <->  A. z  e.  n  ( D `  z )  e.  x
) )
4331, 40, 423syl 18 . . . . . . . . . 10  |-  ( ( ( ph  /\  ps )  /\  ( n  e. 
om  /\  D  e.  ( A  ^m  n
) ) )  -> 
( D : n --> x  <->  A. z  e.  n  ( D `  z )  e.  x ) )
4439, 43syl5bb 248 . . . . . . . . 9  |-  ( ( ( ph  /\  ps )  /\  ( n  e. 
om  /\  D  e.  ( A  ^m  n
) ) )  -> 
( D  e.  ( x  ^m  n )  <->  A. z  e.  n  ( D `  z )  e.  x ) )
4537, 44mtbid 291 . . . . . . . 8  |-  ( ( ( ph  /\  ps )  /\  ( n  e. 
om  /\  D  e.  ( A  ^m  n
) ) )  ->  -.  A. z  e.  n  ( D `  z )  e.  x )
46 nnon 4741 . . . . . . . . . . 11  |-  ( n  e.  om  ->  n  e.  On )
4746ad2antrl 708 . . . . . . . . . 10  |-  ( ( ( ph  /\  ps )  /\  ( n  e. 
om  /\  D  e.  ( A  ^m  n
) ) )  ->  n  e.  On )
48 ssrab2 3334 . . . . . . . . . . . 12  |-  { z  e.  om  |  -.  ( D `  z )  e.  x }  C_  om
49 omsson 4739 . . . . . . . . . . . 12  |-  om  C_  On
5048, 49sstri 3264 . . . . . . . . . . 11  |-  { z  e.  om  |  -.  ( D `  z )  e.  x }  C_  On
51 ordom 4744 . . . . . . . . . . . . . . 15  |-  Ord  om
52 simprl 732 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ps )  /\  ( n  e. 
om  /\  D  e.  ( A  ^m  n
) ) )  ->  n  e.  om )
53 ordelss 4487 . . . . . . . . . . . . . . 15  |-  ( ( Ord  om  /\  n  e.  om )  ->  n  C_ 
om )
5451, 52, 53sylancr 644 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ps )  /\  ( n  e. 
om  /\  D  e.  ( A  ^m  n
) ) )  ->  n  C_  om )
55 rexnal 2630 . . . . . . . . . . . . . . 15  |-  ( E. z  e.  n  -.  ( D `  z )  e.  x  <->  -.  A. z  e.  n  ( D `  z )  e.  x
)
5645, 55sylibr 203 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ps )  /\  ( n  e. 
om  /\  D  e.  ( A  ^m  n
) ) )  ->  E. z  e.  n  -.  ( D `  z
)  e.  x )
57 ssrexv 3314 . . . . . . . . . . . . . 14  |-  ( n 
C_  om  ->  ( E. z  e.  n  -.  ( D `  z )  e.  x  ->  E. z  e.  om  -.  ( D `
 z )  e.  x ) )
5854, 56, 57sylc 56 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ps )  /\  ( n  e. 
om  /\  D  e.  ( A  ^m  n
) ) )  ->  E. z  e.  om  -.  ( D `  z
)  e.  x )
59 rabn0 3550 . . . . . . . . . . . . 13  |-  ( { z  e.  om  |  -.  ( D `  z
)  e.  x }  =/=  (/)  <->  E. z  e.  om  -.  ( D `  z
)  e.  x )
6058, 59sylibr 203 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ps )  /\  ( n  e. 
om  /\  D  e.  ( A  ^m  n
) ) )  ->  { z  e.  om  |  -.  ( D `  z )  e.  x }  =/=  (/) )
61 onint 4665 . . . . . . . . . . . 12  |-  ( ( { z  e.  om  |  -.  ( D `  z )  e.  x }  C_  On  /\  {
z  e.  om  |  -.  ( D `  z
)  e.  x }  =/=  (/) )  ->  |^| { z  e.  om  |  -.  ( D `  z )  e.  x }  e.  { z  e.  om  |  -.  ( D `  z
)  e.  x }
)
6250, 60, 61sylancr 644 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ps )  /\  ( n  e. 
om  /\  D  e.  ( A  ^m  n
) ) )  ->  |^| { z  e.  om  |  -.  ( D `  z )  e.  x }  e.  { z  e.  om  |  -.  ( D `  z )  e.  x } )
6350, 62sseldi 3254 . . . . . . . . . 10  |-  ( ( ( ph  /\  ps )  /\  ( n  e. 
om  /\  D  e.  ( A  ^m  n
) ) )  ->  |^| { z  e.  om  |  -.  ( D `  z )  e.  x }  e.  On )
64 ontri1 4505 . . . . . . . . . 10  |-  ( ( n  e.  On  /\  |^|
{ z  e.  om  |  -.  ( D `  z )  e.  x }  e.  On )  ->  ( n  C_  |^| { z  e.  om  |  -.  ( D `  z )  e.  x }  <->  -.  |^| { z  e.  om  |  -.  ( D `  z )  e.  x }  e.  n ) )
6547, 63, 64syl2anc 642 . . . . . . . . 9  |-  ( ( ( ph  /\  ps )  /\  ( n  e. 
om  /\  D  e.  ( A  ^m  n
) ) )  -> 
( n  C_  |^| { z  e.  om  |  -.  ( D `  z )  e.  x }  <->  -.  |^| { z  e.  om  |  -.  ( D `  z )  e.  x }  e.  n ) )
66 ssintrab 3964 . . . . . . . . . 10  |-  ( n 
C_  |^| { z  e. 
om  |  -.  ( D `  z )  e.  x }  <->  A. z  e.  om  ( -.  ( D `  z )  e.  x  ->  n  C_  z ) )
67 nnon 4741 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  om  ->  z  e.  On )
68 ontri1 4505 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  On  /\  z  e.  On )  ->  ( n  C_  z  <->  -.  z  e.  n ) )
6946, 67, 68syl2an 463 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  om  /\  z  e.  om )  ->  ( n  C_  z  <->  -.  z  e.  n ) )
7069imbi2d 307 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  om  /\  z  e.  om )  ->  ( ( -.  ( D `  z )  e.  x  ->  n  C_  z )  <->  ( -.  ( D `  z )  e.  x  ->  -.  z  e.  n )
) )
71 con34b 283 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  n  -> 
( D `  z
)  e.  x )  <-> 
( -.  ( D `
 z )  e.  x  ->  -.  z  e.  n ) )
7270, 71syl6bbr 254 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  om  /\  z  e.  om )  ->  ( ( -.  ( D `  z )  e.  x  ->  n  C_  z )  <->  ( z  e.  n  ->  ( D `
 z )  e.  x ) ) )
7372pm5.74da 668 . . . . . . . . . . . . . 14  |-  ( n  e.  om  ->  (
( z  e.  om  ->  ( -.  ( D `
 z )  e.  x  ->  n  C_  z
) )  <->  ( z  e.  om  ->  ( z  e.  n  ->  ( D `
 z )  e.  x ) ) ) )
74 bi2.04 350 . . . . . . . . . . . . . 14  |-  ( ( z  e.  om  ->  ( z  e.  n  -> 
( D `  z
)  e.  x ) )  <->  ( z  e.  n  ->  ( z  e.  om  ->  ( D `  z )  e.  x
) ) )
7573, 74syl6bb 252 . . . . . . . . . . . . 13  |-  ( n  e.  om  ->  (
( z  e.  om  ->  ( -.  ( D `
 z )  e.  x  ->  n  C_  z
) )  <->  ( z  e.  n  ->  ( z  e.  om  ->  ( D `  z )  e.  x ) ) ) )
76 elnn 4745 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  n  /\  n  e.  om )  ->  z  e.  om )
77 pm2.27 35 . . . . . . . . . . . . . . . 16  |-  ( z  e.  om  ->  (
( z  e.  om  ->  ( D `  z
)  e.  x )  ->  ( D `  z )  e.  x
) )
7876, 77syl 15 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  n  /\  n  e.  om )  ->  ( ( z  e. 
om  ->  ( D `  z )  e.  x
)  ->  ( D `  z )  e.  x
) )
7978expcom 424 . . . . . . . . . . . . . 14  |-  ( n  e.  om  ->  (
z  e.  n  -> 
( ( z  e. 
om  ->  ( D `  z )  e.  x
)  ->  ( D `  z )  e.  x
) ) )
8079a2d 23 . . . . . . . . . . . . 13  |-  ( n  e.  om  ->  (
( z  e.  n  ->  ( z  e.  om  ->  ( D `  z
)  e.  x ) )  ->  ( z  e.  n  ->  ( D `
 z )  e.  x ) ) )
8175, 80sylbid 206 . . . . . . . . . . . 12  |-  ( n  e.  om  ->  (
( z  e.  om  ->  ( -.  ( D `
 z )  e.  x  ->  n  C_  z
) )  ->  (
z  e.  n  -> 
( D `  z
)  e.  x ) ) )
8281ad2antrl 708 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ps )  /\  ( n  e. 
om  /\  D  e.  ( A  ^m  n
) ) )  -> 
( ( z  e. 
om  ->  ( -.  ( D `  z )  e.  x  ->  n  C_  z ) )  -> 
( z  e.  n  ->  ( D `  z
)  e.  x ) ) )
8382ralimdv2 2699 . . . . . . . . . 10  |-  ( ( ( ph  /\  ps )  /\  ( n  e. 
om  /\  D  e.  ( A  ^m  n
) ) )  -> 
( A. z  e. 
om  ( -.  ( D `  z )  e.  x  ->  n  C_  z )  ->  A. z  e.  n  ( D `  z )  e.  x
) )
8466, 83syl5bi 208 . . . . . . . . 9  |-  ( ( ( ph  /\  ps )  /\  ( n  e. 
om  /\  D  e.  ( A  ^m  n
) ) )  -> 
( n  C_  |^| { z  e.  om  |  -.  ( D `  z )  e.  x }  ->  A. z  e.  n  ( D `  z )  e.  x ) )
8565, 84sylbird 226 . . . . . . . 8  |-  ( ( ( ph  /\  ps )  /\  ( n  e. 
om  /\  D  e.  ( A  ^m  n
) ) )  -> 
( -.  |^| { z  e.  om  |  -.  ( D `  z )  e.  x }  e.  n  ->  A. z  e.  n  ( D `  z )  e.  x ) )
8645, 85mt3d 117 . . . . . . 7  |-  ( ( ( ph  /\  ps )  /\  ( n  e. 
om  /\  D  e.  ( A  ^m  n
) ) )  ->  |^| { z  e.  om  |  -.  ( D `  z )  e.  x }  e.  n )
87 ffvelrn 5743 . . . . . . 7  |-  ( ( D : n --> A  /\  |^|
{ z  e.  om  |  -.  ( D `  z )  e.  x }  e.  n )  ->  ( D `  |^| { z  e.  om  |  -.  ( D `  z
)  e.  x }
)  e.  A )
8831, 86, 87syl2anc 642 . . . . . 6  |-  ( ( ( ph  /\  ps )  /\  ( n  e. 
om  /\  D  e.  ( A  ^m  n
) ) )  -> 
( D `  |^| { z  e.  om  |  -.  ( D `  z
)  e.  x }
)  e.  A )
89 fveq2 5605 . . . . . . . . . . 11  |-  ( y  =  |^| { z  e.  om  |  -.  ( D `  z )  e.  x }  ->  ( D `  y )  =  ( D `  |^| { z  e.  om  |  -.  ( D `  z )  e.  x } ) )
9089eleq1d 2424 . . . . . . . . . 10  |-  ( y  =  |^| { z  e.  om  |  -.  ( D `  z )  e.  x }  ->  ( ( D `  y
)  e.  x  <->  ( D `  |^| { z  e. 
om  |  -.  ( D `  z )  e.  x } )  e.  x ) )
9190notbid 285 . . . . . . . . 9  |-  ( y  =  |^| { z  e.  om  |  -.  ( D `  z )  e.  x }  ->  ( -.  ( D `  y )  e.  x  <->  -.  ( D `  |^| { z  e.  om  |  -.  ( D `  z
)  e.  x }
)  e.  x ) )
92 fveq2 5605 . . . . . . . . . . . 12  |-  ( z  =  y  ->  ( D `  z )  =  ( D `  y ) )
9392eleq1d 2424 . . . . . . . . . . 11  |-  ( z  =  y  ->  (
( D `  z
)  e.  x  <->  ( D `  y )  e.  x
) )
9493notbid 285 . . . . . . . . . 10  |-  ( z  =  y  ->  ( -.  ( D `  z
)  e.  x  <->  -.  ( D `  y )  e.  x ) )
9594cbvrabv 2863 . . . . . . . . 9  |-  { z  e.  om  |  -.  ( D `  z )  e.  x }  =  { y  e.  om  |  -.  ( D `  y )  e.  x }
9691, 95elrab2 3001 . . . . . . . 8  |-  ( |^| { z  e.  om  |  -.  ( D `  z
)  e.  x }  e.  { z  e.  om  |  -.  ( D `  z )  e.  x } 
<->  ( |^| { z  e.  om  |  -.  ( D `  z )  e.  x }  e.  om 
/\  -.  ( D `  |^| { z  e. 
om  |  -.  ( D `  z )  e.  x } )  e.  x ) )
9796simprbi 450 . . . . . . 7  |-  ( |^| { z  e.  om  |  -.  ( D `  z
)  e.  x }  e.  { z  e.  om  |  -.  ( D `  z )  e.  x }  ->  -.  ( D `  |^| { z  e. 
om  |  -.  ( D `  z )  e.  x } )  e.  x )
9862, 97syl 15 . . . . . 6  |-  ( ( ( ph  /\  ps )  /\  ( n  e. 
om  /\  D  e.  ( A  ^m  n
) ) )  ->  -.  ( D `  |^| { z  e.  om  |  -.  ( D `  z
)  e.  x }
)  e.  x )
99 eldif 3238 . . . . . 6  |-  ( ( D `  |^| { z  e.  om  |  -.  ( D `  z )  e.  x } )  e.  ( A  \  x )  <->  ( ( D `  |^| { z  e.  om  |  -.  ( D `  z )  e.  x } )  e.  A  /\  -.  ( D `  |^| { z  e.  om  |  -.  ( D `  z )  e.  x } )  e.  x ) )
10088, 98, 99sylanbrc 645 . . . . 5  |-  ( ( ( ph  /\  ps )  /\  ( n  e. 
om  /\  D  e.  ( A  ^m  n
) ) )  -> 
( D `  |^| { z  e.  om  |  -.  ( D `  z
)  e.  x }
)  e.  ( A 
\  x ) )
101100expr 598 . . . 4  |-  ( ( ( ph  /\  ps )  /\  n  e.  om )  ->  ( D  e.  ( A  ^m  n
)  ->  ( D `  |^| { z  e. 
om  |  -.  ( D `  z )  e.  x } )  e.  ( A  \  x
) ) )
102101rexlimdva 2743 . . 3  |-  ( (
ph  /\  ps )  ->  ( E. n  e. 
om  D  e.  ( A  ^m  n )  ->  ( D `  |^| { z  e.  om  |  -.  ( D `  z )  e.  x } )  e.  ( A  \  x ) ) )
10329, 102mpd 14 . 2  |-  ( (
ph  /\  ps )  ->  ( D `  |^| { z  e.  om  |  -.  ( D `  z
)  e.  x }
)  e.  ( A 
\  x ) )
10418, 103eqeltrd 2432 1  |-  ( (
ph  /\  ps )  ->  ( x F r )  e.  ( A 
\  x ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710    =/= wne 2521   A.wral 2619   E.wrex 2620   {crab 2623   _Vcvv 2864    \ cdif 3225    C_ wss 3228   (/)c0 3531   ifcif 3641   ~Pcpw 3701   |^|cint 3941   U_ciun 3984   class class class wbr 4102    We wwe 4430   Ord word 4470   Oncon0 4471   omcom 4735    X. cxp 4766   `'ccnv 4767   ran crn 4769    Fn wfn 5329   -->wf 5330   -1-1->wf1 5331   -1-1-onto->wf1o 5333   ` cfv 5334  (class class class)co 5942    e. cmpt2 5944    ^m cmap 6857    ~<_ cdom 6946    ~< csdm 6947   Fincfn 6948   cardccrd 7655
This theorem is referenced by:  pwfseqlem4a  8370  pwfseqlem4  8371
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591  ax-inf2 7429
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3907  df-int 3942  df-iun 3986  df-br 4103  df-opab 4157  df-mpt 4158  df-tr 4193  df-eprel 4384  df-id 4388  df-po 4393  df-so 4394  df-fr 4431  df-we 4433  df-ord 4474  df-on 4475  df-lim 4476  df-suc 4477  df-om 4736  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-1st 6206  df-2nd 6207  df-recs 6472  df-rdg 6507  df-er 6744  df-map 6859  df-en 6949  df-dom 6950  df-sdom 6951  df-fin 6952
  Copyright terms: Public domain W3C validator