MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfseqlem4a Unicode version

Theorem pwfseqlem4a 8469
Description: Lemma for pwfseqlem4 8470. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
pwfseqlem4.g  |-  ( ph  ->  G : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n ) )
pwfseqlem4.x  |-  ( ph  ->  X  C_  A )
pwfseqlem4.h  |-  ( ph  ->  H : om -1-1-onto-> X )
pwfseqlem4.ps  |-  ( ps  <->  ( ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x )  /\  om  ~<_  x ) )
pwfseqlem4.k  |-  ( (
ph  /\  ps )  ->  K : U_ n  e.  om  ( x  ^m  n ) -1-1-> x )
pwfseqlem4.d  |-  D  =  ( G `  {
w  e.  x  |  ( ( `' K `  w )  e.  ran  G  /\  -.  w  e.  ( `' G `  ( `' K `  w ) ) ) } )
pwfseqlem4.f  |-  F  =  ( x  e.  _V ,  r  e.  _V  |->  if ( x  e.  Fin ,  ( H `  ( card `  x ) ) ,  ( D `  |^| { z  e.  om  |  -.  ( D `  z )  e.  x } ) ) )
Assertion
Ref Expression
pwfseqlem4a  |-  ( (
ph  /\  ( a  C_  A  /\  s  C_  ( a  X.  a
)  /\  s  We  a ) )  -> 
( a F s )  e.  A )
Distinct variable groups:    n, r, w, x, z    D, n, z    s, a, F   
w, G    w, K    r, a, x, z, H, s    n, a, ph, s, r, x, z    ps, n, z    A, a, n, r, s, x, z
Allowed substitution hints:    ph( w)    ps( x, w, s, r, a)    A( w)    D( x, w, s, r, a)    F( x, z, w, n, r)    G( x, z, n, s, r, a)    H( w, n)    K( x, z, n, s, r, a)    X( x, z, w, n, s, r, a)

Proof of Theorem pwfseqlem4a
StepHypRef Expression
1 isfinite 7540 . . 3  |-  ( a  e.  Fin  <->  a  ~<  om )
2 simpr 448 . . . . . . 7  |-  ( (
ph  /\  a  e.  Fin )  ->  a  e. 
Fin )
3 vex 2902 . . . . . . 7  |-  s  e. 
_V
4 pwfseqlem4.g . . . . . . . 8  |-  ( ph  ->  G : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n ) )
5 pwfseqlem4.x . . . . . . . 8  |-  ( ph  ->  X  C_  A )
6 pwfseqlem4.h . . . . . . . 8  |-  ( ph  ->  H : om -1-1-onto-> X )
7 pwfseqlem4.ps . . . . . . . 8  |-  ( ps  <->  ( ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x )  /\  om  ~<_  x ) )
8 pwfseqlem4.k . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  K : U_ n  e.  om  ( x  ^m  n ) -1-1-> x )
9 pwfseqlem4.d . . . . . . . 8  |-  D  =  ( G `  {
w  e.  x  |  ( ( `' K `  w )  e.  ran  G  /\  -.  w  e.  ( `' G `  ( `' K `  w ) ) ) } )
10 pwfseqlem4.f . . . . . . . 8  |-  F  =  ( x  e.  _V ,  r  e.  _V  |->  if ( x  e.  Fin ,  ( H `  ( card `  x ) ) ,  ( D `  |^| { z  e.  om  |  -.  ( D `  z )  e.  x } ) ) )
114, 5, 6, 7, 8, 9, 10pwfseqlem2 8467 . . . . . . 7  |-  ( ( a  e.  Fin  /\  s  e.  _V )  ->  ( a F s )  =  ( H `
 ( card `  a
) ) )
122, 3, 11sylancl 644 . . . . . 6  |-  ( (
ph  /\  a  e.  Fin )  ->  ( a F s )  =  ( H `  ( card `  a ) ) )
13 f1of 5614 . . . . . . . . 9  |-  ( H : om -1-1-onto-> X  ->  H : om
--> X )
146, 13syl 16 . . . . . . . 8  |-  ( ph  ->  H : om --> X )
15 fss 5539 . . . . . . . 8  |-  ( ( H : om --> X  /\  X  C_  A )  ->  H : om --> A )
1614, 5, 15syl2anc 643 . . . . . . 7  |-  ( ph  ->  H : om --> A )
17 ficardom 7781 . . . . . . 7  |-  ( a  e.  Fin  ->  ( card `  a )  e. 
om )
18 ffvelrn 5807 . . . . . . 7  |-  ( ( H : om --> A  /\  ( card `  a )  e.  om )  ->  ( H `  ( card `  a ) )  e.  A )
1916, 17, 18syl2an 464 . . . . . 6  |-  ( (
ph  /\  a  e.  Fin )  ->  ( H `
 ( card `  a
) )  e.  A
)
2012, 19eqeltrd 2461 . . . . 5  |-  ( (
ph  /\  a  e.  Fin )  ->  ( a F s )  e.  A )
2120ex 424 . . . 4  |-  ( ph  ->  ( a  e.  Fin  ->  ( a F s )  e.  A ) )
2221adantr 452 . . 3  |-  ( (
ph  /\  ( a  C_  A  /\  s  C_  ( a  X.  a
)  /\  s  We  a ) )  -> 
( a  e.  Fin  ->  ( a F s )  e.  A ) )
231, 22syl5bir 210 . 2  |-  ( (
ph  /\  ( a  C_  A  /\  s  C_  ( a  X.  a
)  /\  s  We  a ) )  -> 
( a  ~<  om  ->  ( a F s )  e.  A ) )
24 omelon 7534 . . . . 5  |-  om  e.  On
25 onenon 7769 . . . . 5  |-  ( om  e.  On  ->  om  e.  dom  card )
2624, 25ax-mp 8 . . . 4  |-  om  e.  dom  card
27 simpr3 965 . . . . . 6  |-  ( (
ph  /\  ( a  C_  A  /\  s  C_  ( a  X.  a
)  /\  s  We  a ) )  -> 
s  We  a )
28 19.8a 1754 . . . . . 6  |-  ( s  We  a  ->  E. s 
s  We  a )
2927, 28syl 16 . . . . 5  |-  ( (
ph  /\  ( a  C_  A  /\  s  C_  ( a  X.  a
)  /\  s  We  a ) )  ->  E. s  s  We  a )
30 ween 7849 . . . . 5  |-  ( a  e.  dom  card  <->  E. s 
s  We  a )
3129, 30sylibr 204 . . . 4  |-  ( (
ph  /\  ( a  C_  A  /\  s  C_  ( a  X.  a
)  /\  s  We  a ) )  -> 
a  e.  dom  card )
32 domtri2 7809 . . . 4  |-  ( ( om  e.  dom  card  /\  a  e.  dom  card )  ->  ( om  ~<_  a  <->  -.  a  ~<  om ) )
3326, 31, 32sylancr 645 . . 3  |-  ( (
ph  /\  ( a  C_  A  /\  s  C_  ( a  X.  a
)  /\  s  We  a ) )  -> 
( om  ~<_  a  <->  -.  a  ~<  om ) )
34 nfv 1626 . . . . . . 7  |-  F/ r ( ph  /\  (
( a  C_  A  /\  s  C_  ( a  X.  a )  /\  s  We  a )  /\  om  ~<_  a ) )
35 nfcv 2523 . . . . . . . . 9  |-  F/_ r
a
36 nfmpt22 6080 . . . . . . . . . 10  |-  F/_ r
( x  e.  _V ,  r  e.  _V  |->  if ( x  e.  Fin ,  ( H `  ( card `  x ) ) ,  ( D `  |^| { z  e.  om  |  -.  ( D `  z )  e.  x } ) ) )
3710, 36nfcxfr 2520 . . . . . . . . 9  |-  F/_ r F
38 nfcv 2523 . . . . . . . . 9  |-  F/_ r
s
3935, 37, 38nfov 6043 . . . . . . . 8  |-  F/_ r
( a F s )
4039nfel1 2533 . . . . . . 7  |-  F/ r ( a F s )  e.  ( A 
\  a )
4134, 40nfim 1822 . . . . . 6  |-  F/ r ( ( ph  /\  ( ( a  C_  A  /\  s  C_  (
a  X.  a )  /\  s  We  a
)  /\  om  ~<_  a ) )  ->  ( a F s )  e.  ( A  \  a
) )
42 sseq1 3312 . . . . . . . . . 10  |-  ( r  =  s  ->  (
r  C_  ( a  X.  a )  <->  s  C_  ( a  X.  a
) ) )
43 weeq1 4511 . . . . . . . . . 10  |-  ( r  =  s  ->  (
r  We  a  <->  s  We  a ) )
4442, 433anbi23d 1257 . . . . . . . . 9  |-  ( r  =  s  ->  (
( a  C_  A  /\  r  C_  ( a  X.  a )  /\  r  We  a )  <->  ( a  C_  A  /\  s  C_  ( a  X.  a )  /\  s  We  a ) ) )
4544anbi1d 686 . . . . . . . 8  |-  ( r  =  s  ->  (
( ( a  C_  A  /\  r  C_  (
a  X.  a )  /\  r  We  a
)  /\  om  ~<_  a )  <-> 
( ( a  C_  A  /\  s  C_  (
a  X.  a )  /\  s  We  a
)  /\  om  ~<_  a ) ) )
4645anbi2d 685 . . . . . . 7  |-  ( r  =  s  ->  (
( ph  /\  (
( a  C_  A  /\  r  C_  ( a  X.  a )  /\  r  We  a )  /\  om  ~<_  a ) )  <-> 
( ph  /\  (
( a  C_  A  /\  s  C_  ( a  X.  a )  /\  s  We  a )  /\  om  ~<_  a ) ) ) )
47 oveq2 6028 . . . . . . . 8  |-  ( r  =  s  ->  (
a F r )  =  ( a F s ) )
4847eleq1d 2453 . . . . . . 7  |-  ( r  =  s  ->  (
( a F r )  e.  ( A 
\  a )  <->  ( a F s )  e.  ( A  \  a
) ) )
4946, 48imbi12d 312 . . . . . 6  |-  ( r  =  s  ->  (
( ( ph  /\  ( ( a  C_  A  /\  r  C_  (
a  X.  a )  /\  r  We  a
)  /\  om  ~<_  a ) )  ->  ( a F r )  e.  ( A  \  a
) )  <->  ( ( ph  /\  ( ( a 
C_  A  /\  s  C_  ( a  X.  a
)  /\  s  We  a )  /\  om  ~<_  a ) )  -> 
( a F s )  e.  ( A 
\  a ) ) ) )
50 nfv 1626 . . . . . . . 8  |-  F/ x
( ph  /\  (
( a  C_  A  /\  r  C_  ( a  X.  a )  /\  r  We  a )  /\  om  ~<_  a ) )
51 nfcv 2523 . . . . . . . . . 10  |-  F/_ x
a
52 nfmpt21 6079 . . . . . . . . . . 11  |-  F/_ x
( x  e.  _V ,  r  e.  _V  |->  if ( x  e.  Fin ,  ( H `  ( card `  x ) ) ,  ( D `  |^| { z  e.  om  |  -.  ( D `  z )  e.  x } ) ) )
5310, 52nfcxfr 2520 . . . . . . . . . 10  |-  F/_ x F
54 nfcv 2523 . . . . . . . . . 10  |-  F/_ x
r
5551, 53, 54nfov 6043 . . . . . . . . 9  |-  F/_ x
( a F r )
5655nfel1 2533 . . . . . . . 8  |-  F/ x
( a F r )  e.  ( A 
\  a )
5750, 56nfim 1822 . . . . . . 7  |-  F/ x
( ( ph  /\  ( ( a  C_  A  /\  r  C_  (
a  X.  a )  /\  r  We  a
)  /\  om  ~<_  a ) )  ->  ( a F r )  e.  ( A  \  a
) )
58 sseq1 3312 . . . . . . . . . . . 12  |-  ( x  =  a  ->  (
x  C_  A  <->  a  C_  A ) )
59 xpeq12 4837 . . . . . . . . . . . . . 14  |-  ( ( x  =  a  /\  x  =  a )  ->  ( x  X.  x
)  =  ( a  X.  a ) )
6059anidms 627 . . . . . . . . . . . . 13  |-  ( x  =  a  ->  (
x  X.  x )  =  ( a  X.  a ) )
6160sseq2d 3319 . . . . . . . . . . . 12  |-  ( x  =  a  ->  (
r  C_  ( x  X.  x )  <->  r  C_  ( a  X.  a
) ) )
62 weeq2 4512 . . . . . . . . . . . 12  |-  ( x  =  a  ->  (
r  We  x  <->  r  We  a ) )
6358, 61, 623anbi123d 1254 . . . . . . . . . . 11  |-  ( x  =  a  ->  (
( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x )  <->  ( a  C_  A  /\  r  C_  ( a  X.  a )  /\  r  We  a ) ) )
64 breq2 4157 . . . . . . . . . . 11  |-  ( x  =  a  ->  ( om 
~<_  x  <->  om  ~<_  a ) )
6563, 64anbi12d 692 . . . . . . . . . 10  |-  ( x  =  a  ->  (
( ( x  C_  A  /\  r  C_  (
x  X.  x )  /\  r  We  x
)  /\  om  ~<_  x )  <-> 
( ( a  C_  A  /\  r  C_  (
a  X.  a )  /\  r  We  a
)  /\  om  ~<_  a ) ) )
667, 65syl5bb 249 . . . . . . . . 9  |-  ( x  =  a  ->  ( ps 
<->  ( ( a  C_  A  /\  r  C_  (
a  X.  a )  /\  r  We  a
)  /\  om  ~<_  a ) ) )
6766anbi2d 685 . . . . . . . 8  |-  ( x  =  a  ->  (
( ph  /\  ps )  <->  (
ph  /\  ( (
a  C_  A  /\  r  C_  ( a  X.  a )  /\  r  We  a )  /\  om  ~<_  a ) ) ) )
68 oveq1 6027 . . . . . . . . 9  |-  ( x  =  a  ->  (
x F r )  =  ( a F r ) )
69 difeq2 3402 . . . . . . . . 9  |-  ( x  =  a  ->  ( A  \  x )  =  ( A  \  a
) )
7068, 69eleq12d 2455 . . . . . . . 8  |-  ( x  =  a  ->  (
( x F r )  e.  ( A 
\  x )  <->  ( a F r )  e.  ( A  \  a
) ) )
7167, 70imbi12d 312 . . . . . . 7  |-  ( x  =  a  ->  (
( ( ph  /\  ps )  ->  ( x F r )  e.  ( A  \  x
) )  <->  ( ( ph  /\  ( ( a 
C_  A  /\  r  C_  ( a  X.  a
)  /\  r  We  a )  /\  om  ~<_  a ) )  -> 
( a F r )  e.  ( A 
\  a ) ) ) )
724, 5, 6, 7, 8, 9, 10pwfseqlem3 8468 . . . . . . 7  |-  ( (
ph  /\  ps )  ->  ( x F r )  e.  ( A 
\  x ) )
7357, 71, 72chvar 2021 . . . . . 6  |-  ( (
ph  /\  ( (
a  C_  A  /\  r  C_  ( a  X.  a )  /\  r  We  a )  /\  om  ~<_  a ) )  -> 
( a F r )  e.  ( A 
\  a ) )
7441, 49, 73chvar 2021 . . . . 5  |-  ( (
ph  /\  ( (
a  C_  A  /\  s  C_  ( a  X.  a )  /\  s  We  a )  /\  om  ~<_  a ) )  -> 
( a F s )  e.  ( A 
\  a ) )
7574eldifad 3275 . . . 4  |-  ( (
ph  /\  ( (
a  C_  A  /\  s  C_  ( a  X.  a )  /\  s  We  a )  /\  om  ~<_  a ) )  -> 
( a F s )  e.  A )
7675expr 599 . . 3  |-  ( (
ph  /\  ( a  C_  A  /\  s  C_  ( a  X.  a
)  /\  s  We  a ) )  -> 
( om  ~<_  a  -> 
( a F s )  e.  A ) )
7733, 76sylbird 227 . 2  |-  ( (
ph  /\  ( a  C_  A  /\  s  C_  ( a  X.  a
)  /\  s  We  a ) )  -> 
( -.  a  ~<  om  ->  ( a F s )  e.  A
) )
7823, 77pm2.61d 152 1  |-  ( (
ph  /\  ( a  C_  A  /\  s  C_  ( a  X.  a
)  /\  s  We  a ) )  -> 
( a F s )  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   E.wex 1547    = wceq 1649    e. wcel 1717   {crab 2653   _Vcvv 2899    \ cdif 3260    C_ wss 3263   ifcif 3682   ~Pcpw 3742   |^|cint 3992   U_ciun 4035   class class class wbr 4153    We wwe 4481   Oncon0 4522   omcom 4785    X. cxp 4816   `'ccnv 4817   dom cdm 4818   ran crn 4819   -->wf 5390   -1-1->wf1 5391   -1-1-onto->wf1o 5393   ` cfv 5394  (class class class)co 6020    e. cmpt2 6022    ^m cmap 6954    ~<_ cdom 7043    ~< csdm 7044   Fincfn 7045   cardccrd 7755
This theorem is referenced by:  pwfseqlem4  8470
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-inf2 7529
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-se 4483  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-er 6841  df-map 6956  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-card 7759
  Copyright terms: Public domain W3C validator