MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwnss Structured version   Unicode version

Theorem pwnss 4367
Description: The power set of a set is never a subset. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
pwnss  |-  ( A  e.  V  ->  -.  ~P A  C_  A )

Proof of Theorem pwnss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq12 2500 . . . . . . 7  |-  ( ( y  =  { x  e.  A  |  x  e/  x }  /\  y  =  { x  e.  A  |  x  e/  x } )  ->  (
y  e.  y  <->  { x  e.  A  |  x  e/  x }  e.  {
x  e.  A  |  x  e/  x } ) )
21anidms 628 . . . . . 6  |-  ( y  =  { x  e.  A  |  x  e/  x }  ->  ( y  e.  y  <->  { x  e.  A  |  x  e/  x }  e.  {
x  e.  A  |  x  e/  x } ) )
32notbid 287 . . . . 5  |-  ( y  =  { x  e.  A  |  x  e/  x }  ->  ( -.  y  e.  y  <->  -.  { x  e.  A  |  x  e/  x }  e.  {
x  e.  A  |  x  e/  x } ) )
4 df-nel 2604 . . . . . . 7  |-  ( x  e/  x  <->  -.  x  e.  x )
5 eleq12 2500 . . . . . . . . 9  |-  ( ( x  =  y  /\  x  =  y )  ->  ( x  e.  x  <->  y  e.  y ) )
65anidms 628 . . . . . . . 8  |-  ( x  =  y  ->  (
x  e.  x  <->  y  e.  y ) )
76notbid 287 . . . . . . 7  |-  ( x  =  y  ->  ( -.  x  e.  x  <->  -.  y  e.  y ) )
84, 7syl5bb 250 . . . . . 6  |-  ( x  =  y  ->  (
x  e/  x  <->  -.  y  e.  y ) )
98cbvrabv 2957 . . . . 5  |-  { x  e.  A  |  x  e/  x }  =  {
y  e.  A  |  -.  y  e.  y }
103, 9elrab2 3096 . . . 4  |-  ( { x  e.  A  |  x  e/  x }  e.  { x  e.  A  |  x  e/  x }  <->  ( {
x  e.  A  |  x  e/  x }  e.  A  /\  -.  { x  e.  A  |  x  e/  x }  e.  {
x  e.  A  |  x  e/  x } ) )
11 pclem6 898 . . . 4  |-  ( ( { x  e.  A  |  x  e/  x }  e.  { x  e.  A  |  x  e/  x }  <->  ( {
x  e.  A  |  x  e/  x }  e.  A  /\  -.  { x  e.  A  |  x  e/  x }  e.  {
x  e.  A  |  x  e/  x } ) )  ->  -.  { x  e.  A  |  x  e/  x }  e.  A
)
1210, 11ax-mp 8 . . 3  |-  -.  {
x  e.  A  |  x  e/  x }  e.  A
13 ssel 3344 . . 3  |-  ( ~P A  C_  A  ->  ( { x  e.  A  |  x  e/  x }  e.  ~P A  ->  { x  e.  A  |  x  e/  x }  e.  A )
)
1412, 13mtoi 172 . 2  |-  ( ~P A  C_  A  ->  -. 
{ x  e.  A  |  x  e/  x }  e.  ~P A
)
15 ssrab2 3430 . . 3  |-  { x  e.  A  |  x  e/  x }  C_  A
16 elpw2g 4365 . . 3  |-  ( A  e.  V  ->  ( { x  e.  A  |  x  e/  x }  e.  ~P A  <->  { x  e.  A  |  x  e/  x }  C_  A ) )
1715, 16mpbiri 226 . 2  |-  ( A  e.  V  ->  { x  e.  A  |  x  e/  x }  e.  ~P A )
1814, 17nsyl3 114 1  |-  ( A  e.  V  ->  -.  ~P A  C_  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726    e/ wnel 2602   {crab 2711    C_ wss 3322   ~Pcpw 3801
This theorem is referenced by:  pwne  4368  pwuninel2  6546
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-nel 2604  df-rab 2716  df-v 2960  df-in 3329  df-ss 3336  df-pw 3803
  Copyright terms: Public domain W3C validator