MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsdompw Unicode version

Theorem pwsdompw 7846
Description: Lemma for domtriom 8085. This is the equinumerosity version of the algebraic identity  sum_ k  e.  n
( 2 ^ k
)  =  ( 2 ^ n )  - 
1. (Contributed by Mario Carneiro, 7-Feb-2013.)
Assertion
Ref Expression
pwsdompw  |-  ( ( n  e.  om  /\  A. k  e.  suc  n
( B `  k
)  ~~  ~P k
)  ->  U_ k  e.  n  ( B `  k )  ~<  ( B `  n )
)
Distinct variable group:    B, k, n

Proof of Theorem pwsdompw
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 suceq 4473 . . . . 5  |-  ( n  =  (/)  ->  suc  n  =  suc  (/) )
21raleqdv 2755 . . . 4  |-  ( n  =  (/)  ->  ( A. k  e.  suc  n ( B `  k ) 
~~  ~P k  <->  A. k  e.  suc  (/) ( B `  k )  ~~  ~P k ) )
3 iuneq1 3934 . . . . 5  |-  ( n  =  (/)  ->  U_ k  e.  n  ( B `  k )  =  U_ k  e.  (/)  ( B `
 k ) )
4 fveq2 5541 . . . . 5  |-  ( n  =  (/)  ->  ( B `
 n )  =  ( B `  (/) ) )
53, 4breq12d 4052 . . . 4  |-  ( n  =  (/)  ->  ( U_ k  e.  n  ( B `  k )  ~<  ( B `  n
)  <->  U_ k  e.  (/)  ( B `  k ) 
~<  ( B `  (/) ) ) )
62, 5imbi12d 311 . . 3  |-  ( n  =  (/)  ->  ( ( A. k  e.  suc  n ( B `  k )  ~~  ~P k  ->  U_ k  e.  n  ( B `  k ) 
~<  ( B `  n
) )  <->  ( A. k  e.  suc  (/) ( B `
 k )  ~~  ~P k  ->  U_ k  e.  (/)  ( B `  k )  ~<  ( B `  (/) ) ) ) )
7 suceq 4473 . . . . 5  |-  ( n  =  m  ->  suc  n  =  suc  m )
87raleqdv 2755 . . . 4  |-  ( n  =  m  ->  ( A. k  e.  suc  n ( B `  k )  ~~  ~P k 
<-> 
A. k  e.  suc  m ( B `  k )  ~~  ~P k ) )
9 iuneq1 3934 . . . . 5  |-  ( n  =  m  ->  U_ k  e.  n  ( B `  k )  =  U_ k  e.  m  ( B `  k )
)
10 fveq2 5541 . . . . 5  |-  ( n  =  m  ->  ( B `  n )  =  ( B `  m ) )
119, 10breq12d 4052 . . . 4  |-  ( n  =  m  ->  ( U_ k  e.  n  ( B `  k ) 
~<  ( B `  n
)  <->  U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
) ) )
128, 11imbi12d 311 . . 3  |-  ( n  =  m  ->  (
( A. k  e. 
suc  n ( B `
 k )  ~~  ~P k  ->  U_ k  e.  n  ( B `  k )  ~<  ( B `  n )
)  <->  ( A. k  e.  suc  m ( B `
 k )  ~~  ~P k  ->  U_ k  e.  m  ( B `  k )  ~<  ( B `  m )
) ) )
13 suceq 4473 . . . . 5  |-  ( n  =  suc  m  ->  suc  n  =  suc  suc  m )
1413raleqdv 2755 . . . 4  |-  ( n  =  suc  m  -> 
( A. k  e. 
suc  n ( B `
 k )  ~~  ~P k  <->  A. k  e.  suc  suc  m ( B `  k )  ~~  ~P k ) )
15 iuneq1 3934 . . . . 5  |-  ( n  =  suc  m  ->  U_ k  e.  n  ( B `  k )  =  U_ k  e. 
suc  m ( B `
 k ) )
16 fveq2 5541 . . . . 5  |-  ( n  =  suc  m  -> 
( B `  n
)  =  ( B `
 suc  m )
)
1715, 16breq12d 4052 . . . 4  |-  ( n  =  suc  m  -> 
( U_ k  e.  n  ( B `  k ) 
~<  ( B `  n
)  <->  U_ k  e.  suc  m ( B `  k )  ~<  ( B `  suc  m ) ) )
1814, 17imbi12d 311 . . 3  |-  ( n  =  suc  m  -> 
( ( A. k  e.  suc  n ( B `
 k )  ~~  ~P k  ->  U_ k  e.  n  ( B `  k )  ~<  ( B `  n )
)  <->  ( A. k  e.  suc  suc  m ( B `  k )  ~~  ~P k  ->  U_ k  e.  suc  m ( B `
 k )  ~< 
( B `  suc  m ) ) ) )
19 0iun 3975 . . . 4  |-  U_ k  e.  (/)  ( B `  k )  =  (/)
20 0ex 4166 . . . . . . 7  |-  (/)  e.  _V
2120sucid 4487 . . . . . 6  |-  (/)  e.  suc  (/)
22 fveq2 5541 . . . . . . . 8  |-  ( k  =  (/)  ->  ( B `
 k )  =  ( B `  (/) ) )
23 pweq 3641 . . . . . . . 8  |-  ( k  =  (/)  ->  ~P k  =  ~P (/) )
2422, 23breq12d 4052 . . . . . . 7  |-  ( k  =  (/)  ->  ( ( B `  k ) 
~~  ~P k  <->  ( B `  (/) )  ~~  ~P (/) ) )
2524rspcv 2893 . . . . . 6  |-  ( (/)  e.  suc  (/)  ->  ( A. k  e.  suc  (/) ( B `
 k )  ~~  ~P k  ->  ( B `
 (/) )  ~~  ~P (/) ) )
2621, 25ax-mp 8 . . . . 5  |-  ( A. k  e.  suc  (/) ( B `
 k )  ~~  ~P k  ->  ( B `
 (/) )  ~~  ~P (/) )
2720canth2 7030 . . . . . 6  |-  (/)  ~<  ~P (/)
28 ensym 6926 . . . . . 6  |-  ( ( B `  (/) )  ~~  ~P (/)  ->  ~P (/)  ~~  ( B `  (/) ) )
29 sdomentr 7011 . . . . . 6  |-  ( (
(/)  ~<  ~P (/)  /\  ~P (/)  ~~  ( B `  (/) ) )  ->  (/)  ~<  ( B `  (/) ) )
3027, 28, 29sylancr 644 . . . . 5  |-  ( ( B `  (/) )  ~~  ~P (/)  ->  (/)  ~<  ( B `  (/) ) )
3126, 30syl 15 . . . 4  |-  ( A. k  e.  suc  (/) ( B `
 k )  ~~  ~P k  ->  (/)  ~<  ( B `  (/) ) )
3219, 31syl5eqbr 4072 . . 3  |-  ( A. k  e.  suc  (/) ( B `
 k )  ~~  ~P k  ->  U_ k  e.  (/)  ( B `  k )  ~<  ( B `  (/) ) )
33 sssucid 4485 . . . . . . . . 9  |-  suc  m  C_ 
suc  suc  m
34 ssralv 3250 . . . . . . . . 9  |-  ( suc  m  C_  suc  suc  m  ->  ( A. k  e. 
suc  suc  m ( B `
 k )  ~~  ~P k  ->  A. k  e.  suc  m ( B `
 k )  ~~  ~P k ) )
3533, 34ax-mp 8 . . . . . . . 8  |-  ( A. k  e.  suc  suc  m
( B `  k
)  ~~  ~P k  ->  A. k  e.  suc  m ( B `  k )  ~~  ~P k )
36 pm2.27 35 . . . . . . . 8  |-  ( A. k  e.  suc  m ( B `  k ) 
~~  ~P k  ->  (
( A. k  e. 
suc  m ( B `
 k )  ~~  ~P k  ->  U_ k  e.  m  ( B `  k )  ~<  ( B `  m )
)  ->  U_ k  e.  m  ( B `  k )  ~<  ( B `  m )
) )
3735, 36syl 15 . . . . . . 7  |-  ( A. k  e.  suc  suc  m
( B `  k
)  ~~  ~P k  ->  ( ( A. k  e.  suc  m ( B `
 k )  ~~  ~P k  ->  U_ k  e.  m  ( B `  k )  ~<  ( B `  m )
)  ->  U_ k  e.  m  ( B `  k )  ~<  ( B `  m )
) )
3837adantl 452 . . . . . 6  |-  ( ( m  e.  om  /\  A. k  e.  suc  suc  m ( B `  k )  ~~  ~P k )  ->  (
( A. k  e. 
suc  m ( B `
 k )  ~~  ~P k  ->  U_ k  e.  m  ( B `  k )  ~<  ( B `  m )
)  ->  U_ k  e.  m  ( B `  k )  ~<  ( B `  m )
) )
39 vex 2804 . . . . . . . . . . . . 13  |-  m  e. 
_V
4039sucid 4487 . . . . . . . . . . . 12  |-  m  e. 
suc  m
41 elelsuc 4480 . . . . . . . . . . . 12  |-  ( m  e.  suc  m  ->  m  e.  suc  suc  m
)
42 fveq2 5541 . . . . . . . . . . . . . 14  |-  ( k  =  m  ->  ( B `  k )  =  ( B `  m ) )
43 pweq 3641 . . . . . . . . . . . . . 14  |-  ( k  =  m  ->  ~P k  =  ~P m
)
4442, 43breq12d 4052 . . . . . . . . . . . . 13  |-  ( k  =  m  ->  (
( B `  k
)  ~~  ~P k  <->  ( B `  m ) 
~~  ~P m ) )
4544rspcv 2893 . . . . . . . . . . . 12  |-  ( m  e.  suc  suc  m  ->  ( A. k  e. 
suc  suc  m ( B `
 k )  ~~  ~P k  ->  ( B `
 m )  ~~  ~P m ) )
4640, 41, 45mp2b 9 . . . . . . . . . . 11  |-  ( A. k  e.  suc  suc  m
( B `  k
)  ~~  ~P k  ->  ( B `  m
)  ~~  ~P m
)
47 cdaen 7815 . . . . . . . . . . 11  |-  ( ( ( B `  m
)  ~~  ~P m  /\  ( B `  m
)  ~~  ~P m
)  ->  ( ( B `  m )  +c  ( B `  m
) )  ~~  ( ~P m  +c  ~P m
) )
4846, 46, 47syl2anc 642 . . . . . . . . . 10  |-  ( A. k  e.  suc  suc  m
( B `  k
)  ~~  ~P k  ->  ( ( B `  m )  +c  ( B `  m )
)  ~~  ( ~P m  +c  ~P m ) )
49 pwcda1 7836 . . . . . . . . . . 11  |-  ( m  e.  om  ->  ( ~P m  +c  ~P m
)  ~~  ~P (
m  +c  1o ) )
50 nnord 4680 . . . . . . . . . . . . . 14  |-  ( m  e.  om  ->  Ord  m )
51 ordirr 4426 . . . . . . . . . . . . . 14  |-  ( Ord  m  ->  -.  m  e.  m )
5250, 51syl 15 . . . . . . . . . . . . 13  |-  ( m  e.  om  ->  -.  m  e.  m )
53 cda1en 7817 . . . . . . . . . . . . 13  |-  ( ( m  e.  om  /\  -.  m  e.  m
)  ->  ( m  +c  1o )  ~~  suc  m )
5452, 53mpdan 649 . . . . . . . . . . . 12  |-  ( m  e.  om  ->  (
m  +c  1o ) 
~~  suc  m )
55 pwen 7050 . . . . . . . . . . . 12  |-  ( ( m  +c  1o ) 
~~  suc  m  ->  ~P ( m  +c  1o )  ~~  ~P suc  m
)
5654, 55syl 15 . . . . . . . . . . 11  |-  ( m  e.  om  ->  ~P ( m  +c  1o )  ~~  ~P suc  m
)
57 entr 6929 . . . . . . . . . . 11  |-  ( ( ( ~P m  +c  ~P m )  ~~  ~P ( m  +c  1o )  /\  ~P ( m  +c  1o )  ~~  ~P suc  m )  -> 
( ~P m  +c  ~P m )  ~~  ~P suc  m )
5849, 56, 57syl2anc 642 . . . . . . . . . 10  |-  ( m  e.  om  ->  ( ~P m  +c  ~P m
)  ~~  ~P suc  m )
59 entr 6929 . . . . . . . . . 10  |-  ( ( ( ( B `  m )  +c  ( B `  m )
)  ~~  ( ~P m  +c  ~P m )  /\  ( ~P m  +c  ~P m )  ~~  ~P suc  m )  -> 
( ( B `  m )  +c  ( B `  m )
)  ~~  ~P suc  m )
6048, 58, 59syl2an 463 . . . . . . . . 9  |-  ( ( A. k  e.  suc  suc  m ( B `  k )  ~~  ~P k  /\  m  e.  om )  ->  ( ( B `
 m )  +c  ( B `  m
) )  ~~  ~P suc  m )
6139sucex 4618 . . . . . . . . . . . . 13  |-  suc  m  e.  _V
6261sucid 4487 . . . . . . . . . . . 12  |-  suc  m  e.  suc  suc  m
63 fveq2 5541 . . . . . . . . . . . . . 14  |-  ( k  =  suc  m  -> 
( B `  k
)  =  ( B `
 suc  m )
)
64 pweq 3641 . . . . . . . . . . . . . 14  |-  ( k  =  suc  m  ->  ~P k  =  ~P suc  m )
6563, 64breq12d 4052 . . . . . . . . . . . . 13  |-  ( k  =  suc  m  -> 
( ( B `  k )  ~~  ~P k 
<->  ( B `  suc  m )  ~~  ~P suc  m ) )
6665rspcv 2893 . . . . . . . . . . . 12  |-  ( suc  m  e.  suc  suc  m  ->  ( A. k  e.  suc  suc  m ( B `  k )  ~~  ~P k  ->  ( B `  suc  m ) 
~~  ~P suc  m ) )
6762, 66ax-mp 8 . . . . . . . . . . 11  |-  ( A. k  e.  suc  suc  m
( B `  k
)  ~~  ~P k  ->  ( B `  suc  m )  ~~  ~P suc  m )
68 ensym 6926 . . . . . . . . . . 11  |-  ( ( B `  suc  m
)  ~~  ~P suc  m  ->  ~P suc  m  ~~  ( B `  suc  m ) )
6967, 68syl 15 . . . . . . . . . 10  |-  ( A. k  e.  suc  suc  m
( B `  k
)  ~~  ~P k  ->  ~P suc  m  ~~  ( B `  suc  m
) )
7069adantr 451 . . . . . . . . 9  |-  ( ( A. k  e.  suc  suc  m ( B `  k )  ~~  ~P k  /\  m  e.  om )  ->  ~P suc  m  ~~  ( B `  suc  m ) )
71 entr 6929 . . . . . . . . 9  |-  ( ( ( ( B `  m )  +c  ( B `  m )
)  ~~  ~P suc  m  /\  ~P suc  m  ~~  ( B `  suc  m ) )  -> 
( ( B `  m )  +c  ( B `  m )
)  ~~  ( B `  suc  m ) )
7260, 70, 71syl2anc 642 . . . . . . . 8  |-  ( ( A. k  e.  suc  suc  m ( B `  k )  ~~  ~P k  /\  m  e.  om )  ->  ( ( B `
 m )  +c  ( B `  m
) )  ~~  ( B `  suc  m ) )
7372ancoms 439 . . . . . . 7  |-  ( ( m  e.  om  /\  A. k  e.  suc  suc  m ( B `  k )  ~~  ~P k )  ->  (
( B `  m
)  +c  ( B `
 m ) ) 
~~  ( B `  suc  m ) )
74 nnfi 7069 . . . . . . . . . . . 12  |-  ( m  e.  om  ->  m  e.  Fin )
75 pwfi 7167 . . . . . . . . . . . . 13  |-  ( m  e.  Fin  <->  ~P m  e.  Fin )
76 isfinite 7369 . . . . . . . . . . . . 13  |-  ( ~P m  e.  Fin  <->  ~P m  ~<  om )
7775, 76bitri 240 . . . . . . . . . . . 12  |-  ( m  e.  Fin  <->  ~P m  ~<  om )
7874, 77sylib 188 . . . . . . . . . . 11  |-  ( m  e.  om  ->  ~P m  ~<  om )
79 ensdomtr 7013 . . . . . . . . . . 11  |-  ( ( ( B `  m
)  ~~  ~P m  /\  ~P m  ~<  om )  ->  ( B `  m
)  ~<  om )
8046, 78, 79syl2an 463 . . . . . . . . . 10  |-  ( ( A. k  e.  suc  suc  m ( B `  k )  ~~  ~P k  /\  m  e.  om )  ->  ( B `  m )  ~<  om )
81 isfinite 7369 . . . . . . . . . 10  |-  ( ( B `  m )  e.  Fin  <->  ( B `  m )  ~<  om )
8280, 81sylibr 203 . . . . . . . . 9  |-  ( ( A. k  e.  suc  suc  m ( B `  k )  ~~  ~P k  /\  m  e.  om )  ->  ( B `  m )  e.  Fin )
8382ancoms 439 . . . . . . . 8  |-  ( ( m  e.  om  /\  A. k  e.  suc  suc  m ( B `  k )  ~~  ~P k )  ->  ( B `  m )  e.  Fin )
8439, 42iunsuc 4490 . . . . . . . . . . 11  |-  U_ k  e.  suc  m ( B `
 k )  =  ( U_ k  e.  m  ( B `  k )  u.  ( B `  m )
)
85 fvex 5555 . . . . . . . . . . . . 13  |-  ( B `
 k )  e. 
_V
8639, 85iunex 5786 . . . . . . . . . . . 12  |-  U_ k  e.  m  ( B `  k )  e.  _V
87 fvex 5555 . . . . . . . . . . . 12  |-  ( B `
 m )  e. 
_V
88 uncdadom 7813 . . . . . . . . . . . 12  |-  ( (
U_ k  e.  m  ( B `  k )  e.  _V  /\  ( B `  m )  e.  _V )  ->  ( U_ k  e.  m  ( B `  k )  u.  ( B `  m ) )  ~<_  (
U_ k  e.  m  ( B `  k )  +c  ( B `  m ) ) )
8986, 87, 88mp2an 653 . . . . . . . . . . 11  |-  ( U_ k  e.  m  ( B `  k )  u.  ( B `  m
) )  ~<_  ( U_ k  e.  m  ( B `  k )  +c  ( B `  m
) )
9084, 89eqbrtri 4058 . . . . . . . . . 10  |-  U_ k  e.  suc  m ( B `
 k )  ~<_  (
U_ k  e.  m  ( B `  k )  +c  ( B `  m ) )
91 sdomtr 7015 . . . . . . . . . . . . . . . 16  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  ~<  om )  ->  U_ k  e.  m  ( B `  k ) 
~<  om )
9281, 91sylan2b 461 . . . . . . . . . . . . . . 15  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  U_ k  e.  m  ( B `  k ) 
~<  om )
93 isfinite 7369 . . . . . . . . . . . . . . 15  |-  ( U_ k  e.  m  ( B `  k )  e.  Fin  <->  U_ k  e.  m  ( B `  k ) 
~<  om )
9492, 93sylibr 203 . . . . . . . . . . . . . 14  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  U_ k  e.  m  ( B `  k )  e.  Fin )
95 finnum 7597 . . . . . . . . . . . . . 14  |-  ( U_ k  e.  m  ( B `  k )  e.  Fin  ->  U_ k  e.  m  ( B `  k )  e.  dom  card )
9694, 95syl 15 . . . . . . . . . . . . 13  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  U_ k  e.  m  ( B `  k )  e.  dom  card )
97 finnum 7597 . . . . . . . . . . . . . 14  |-  ( ( B `  m )  e.  Fin  ->  ( B `  m )  e.  dom  card )
9897adantl 452 . . . . . . . . . . . . 13  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  ( B `  m )  e.  dom  card )
99 cardacda 7840 . . . . . . . . . . . . 13  |-  ( (
U_ k  e.  m  ( B `  k )  e.  dom  card  /\  ( B `  m )  e.  dom  card )  ->  ( U_ k  e.  m  ( B `  k )  +c  ( B `  m ) )  ~~  ( ( card `  U_ k  e.  m  ( B `  k ) )  +o  ( card `  ( B `  m )
) ) )
10096, 98, 99syl2anc 642 . . . . . . . . . . . 12  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  ( U_ k  e.  m  ( B `  k )  +c  ( B `  m )
)  ~~  ( ( card `  U_ k  e.  m  ( B `  k ) )  +o  ( card `  ( B `  m )
) ) )
101 ficardom 7610 . . . . . . . . . . . . . . . 16  |-  ( U_ k  e.  m  ( B `  k )  e.  Fin  ->  ( card ` 
U_ k  e.  m  ( B `  k ) )  e.  om )
10294, 101syl 15 . . . . . . . . . . . . . . 15  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  ( card `  U_ k  e.  m  ( B `  k ) )  e. 
om )
103 ficardom 7610 . . . . . . . . . . . . . . . 16  |-  ( ( B `  m )  e.  Fin  ->  ( card `  ( B `  m ) )  e. 
om )
104103adantl 452 . . . . . . . . . . . . . . 15  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  ( card `  ( B `  m )
)  e.  om )
105 cardid2 7602 . . . . . . . . . . . . . . . . . 18  |-  ( U_ k  e.  m  ( B `  k )  e.  dom  card  ->  ( card `  U_ k  e.  m  ( B `  k ) )  ~~  U_ k  e.  m  ( B `  k ) )
10694, 95, 1053syl 18 . . . . . . . . . . . . . . . . 17  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  ( card `  U_ k  e.  m  ( B `  k ) )  ~~  U_ k  e.  m  ( B `  k ) )
107 simpl 443 . . . . . . . . . . . . . . . . 17  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
) )
108 cardid2 7602 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B `  m )  e.  dom  card  ->  (
card `  ( B `  m ) )  ~~  ( B `  m ) )
109 ensym 6926 . . . . . . . . . . . . . . . . . . 19  |-  ( (
card `  ( B `  m ) )  ~~  ( B `  m )  ->  ( B `  m )  ~~  ( card `  ( B `  m ) ) )
11097, 108, 1093syl 18 . . . . . . . . . . . . . . . . . 18  |-  ( ( B `  m )  e.  Fin  ->  ( B `  m )  ~~  ( card `  ( B `  m )
) )
111110adantl 452 . . . . . . . . . . . . . . . . 17  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  ( B `  m )  ~~  ( card `  ( B `  m ) ) )
112 ensdomtr 7013 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( card `  U_ k  e.  m  ( B `  k ) )  ~~  U_ k  e.  m  ( B `  k )  /\  U_ k  e.  m  ( B `  k )  ~<  ( B `  m )
)  ->  ( card ` 
U_ k  e.  m  ( B `  k ) )  ~<  ( B `  m ) )
113 sdomentr 7011 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( card `  U_ k  e.  m  ( B `  k ) )  ~< 
( B `  m
)  /\  ( B `  m )  ~~  ( card `  ( B `  m ) ) )  ->  ( card `  U_ k  e.  m  ( B `  k ) )  ~< 
( card `  ( B `  m ) ) )
114112, 113sylan 457 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( card `  U_ k  e.  m  ( B `  k ) )  ~~  U_ k  e.  m  ( B `  k )  /\  U_ k  e.  m  ( B `  k )  ~<  ( B `  m )
)  /\  ( B `  m )  ~~  ( card `  ( B `  m ) ) )  ->  ( card `  U_ k  e.  m  ( B `  k ) )  ~< 
( card `  ( B `  m ) ) )
115106, 107, 111, 114syl21anc 1181 . . . . . . . . . . . . . . . 16  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  ( card `  U_ k  e.  m  ( B `  k ) )  ~< 
( card `  ( B `  m ) ) )
116 cardon 7593 . . . . . . . . . . . . . . . . . 18  |-  ( card `  U_ k  e.  m  ( B `  k ) )  e.  On
117 cardon 7593 . . . . . . . . . . . . . . . . . . 19  |-  ( card `  ( B `  m
) )  e.  On
118 onenon 7598 . . . . . . . . . . . . . . . . . . 19  |-  ( (
card `  ( B `  m ) )  e.  On  ->  ( card `  ( B `  m
) )  e.  dom  card )
119117, 118ax-mp 8 . . . . . . . . . . . . . . . . . 18  |-  ( card `  ( B `  m
) )  e.  dom  card
120 cardsdomel 7623 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( card `  U_ k  e.  m  ( B `  k ) )  e.  On  /\  ( card `  ( B `  m
) )  e.  dom  card )  ->  ( ( card `  U_ k  e.  m  ( B `  k ) )  ~< 
( card `  ( B `  m ) )  <->  ( card ` 
U_ k  e.  m  ( B `  k ) )  e.  ( card `  ( card `  ( B `  m )
) ) ) )
121116, 119, 120mp2an 653 . . . . . . . . . . . . . . . . 17  |-  ( (
card `  U_ k  e.  m  ( B `  k ) )  ~< 
( card `  ( B `  m ) )  <->  ( card ` 
U_ k  e.  m  ( B `  k ) )  e.  ( card `  ( card `  ( B `  m )
) ) )
122 cardidm 7608 . . . . . . . . . . . . . . . . . 18  |-  ( card `  ( card `  ( B `  m )
) )  =  (
card `  ( B `  m ) )
123122eleq2i 2360 . . . . . . . . . . . . . . . . 17  |-  ( (
card `  U_ k  e.  m  ( B `  k ) )  e.  ( card `  ( card `  ( B `  m ) ) )  <-> 
( card `  U_ k  e.  m  ( B `  k ) )  e.  ( card `  ( B `  m )
) )
124121, 123bitri 240 . . . . . . . . . . . . . . . 16  |-  ( (
card `  U_ k  e.  m  ( B `  k ) )  ~< 
( card `  ( B `  m ) )  <->  ( card ` 
U_ k  e.  m  ( B `  k ) )  e.  ( card `  ( B `  m
) ) )
125115, 124sylib 188 . . . . . . . . . . . . . . 15  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  ( card `  U_ k  e.  m  ( B `  k ) )  e.  ( card `  ( B `  m )
) )
126 nnaordr 6634 . . . . . . . . . . . . . . . 16  |-  ( ( ( card `  U_ k  e.  m  ( B `  k ) )  e. 
om  /\  ( card `  ( B `  m
) )  e.  om  /\  ( card `  ( B `  m )
)  e.  om )  ->  ( ( card `  U_ k  e.  m  ( B `  k ) )  e.  ( card `  ( B `  m )
)  <->  ( ( card `  U_ k  e.  m  ( B `  k ) )  +o  ( card `  ( B `  m
) ) )  e.  ( ( card `  ( B `  m )
)  +o  ( card `  ( B `  m
) ) ) ) )
127126biimpa 470 . . . . . . . . . . . . . . 15  |-  ( ( ( ( card `  U_ k  e.  m  ( B `  k ) )  e. 
om  /\  ( card `  ( B `  m
) )  e.  om  /\  ( card `  ( B `  m )
)  e.  om )  /\  ( card `  U_ k  e.  m  ( B `  k ) )  e.  ( card `  ( B `  m )
) )  ->  (
( card `  U_ k  e.  m  ( B `  k ) )  +o  ( card `  ( B `  m )
) )  e.  ( ( card `  ( B `  m )
)  +o  ( card `  ( B `  m
) ) ) )
128102, 104, 104, 125, 127syl31anc 1185 . . . . . . . . . . . . . 14  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  ( ( card `  U_ k  e.  m  ( B `  k ) )  +o  ( card `  ( B `  m
) ) )  e.  ( ( card `  ( B `  m )
)  +o  ( card `  ( B `  m
) ) ) )
129 nnacl 6625 . . . . . . . . . . . . . . . . 17  |-  ( ( ( card `  ( B `  m )
)  e.  om  /\  ( card `  ( B `  m ) )  e. 
om )  ->  (
( card `  ( B `  m ) )  +o  ( card `  ( B `  m )
) )  e.  om )
130103, 103, 129syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ( B `  m )  e.  Fin  ->  (
( card `  ( B `  m ) )  +o  ( card `  ( B `  m )
) )  e.  om )
131 cardnn 7612 . . . . . . . . . . . . . . . 16  |-  ( ( ( card `  ( B `  m )
)  +o  ( card `  ( B `  m
) ) )  e. 
om  ->  ( card `  (
( card `  ( B `  m ) )  +o  ( card `  ( B `  m )
) ) )  =  ( ( card `  ( B `  m )
)  +o  ( card `  ( B `  m
) ) ) )
132130, 131syl 15 . . . . . . . . . . . . . . 15  |-  ( ( B `  m )  e.  Fin  ->  ( card `  ( ( card `  ( B `  m
) )  +o  ( card `  ( B `  m ) ) ) )  =  ( (
card `  ( B `  m ) )  +o  ( card `  ( B `  m )
) ) )
133132adantl 452 . . . . . . . . . . . . . 14  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  ( card `  (
( card `  ( B `  m ) )  +o  ( card `  ( B `  m )
) ) )  =  ( ( card `  ( B `  m )
)  +o  ( card `  ( B `  m
) ) ) )
134128, 133eleqtrrd 2373 . . . . . . . . . . . . 13  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  ( ( card `  U_ k  e.  m  ( B `  k ) )  +o  ( card `  ( B `  m
) ) )  e.  ( card `  (
( card `  ( B `  m ) )  +o  ( card `  ( B `  m )
) ) ) )
135 cardsdomelir 7622 . . . . . . . . . . . . 13  |-  ( ( ( card `  U_ k  e.  m  ( B `  k ) )  +o  ( card `  ( B `  m )
) )  e.  (
card `  ( ( card `  ( B `  m ) )  +o  ( card `  ( B `  m )
) ) )  -> 
( ( card `  U_ k  e.  m  ( B `  k ) )  +o  ( card `  ( B `  m )
) )  ~<  (
( card `  ( B `  m ) )  +o  ( card `  ( B `  m )
) ) )
136134, 135syl 15 . . . . . . . . . . . 12  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  ( ( card `  U_ k  e.  m  ( B `  k ) )  +o  ( card `  ( B `  m
) ) )  ~< 
( ( card `  ( B `  m )
)  +o  ( card `  ( B `  m
) ) ) )
137 ensdomtr 7013 . . . . . . . . . . . 12  |-  ( ( ( U_ k  e.  m  ( B `  k )  +c  ( B `  m )
)  ~~  ( ( card `  U_ k  e.  m  ( B `  k ) )  +o  ( card `  ( B `  m )
) )  /\  (
( card `  U_ k  e.  m  ( B `  k ) )  +o  ( card `  ( B `  m )
) )  ~<  (
( card `  ( B `  m ) )  +o  ( card `  ( B `  m )
) ) )  -> 
( U_ k  e.  m  ( B `  k )  +c  ( B `  m ) )  ~< 
( ( card `  ( B `  m )
)  +o  ( card `  ( B `  m
) ) ) )
138100, 136, 137syl2anc 642 . . . . . . . . . . 11  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  ( U_ k  e.  m  ( B `  k )  +c  ( B `  m )
)  ~<  ( ( card `  ( B `  m
) )  +o  ( card `  ( B `  m ) ) ) )
139 cardacda 7840 . . . . . . . . . . . . . 14  |-  ( ( ( B `  m
)  e.  dom  card  /\  ( B `  m
)  e.  dom  card )  ->  ( ( B `
 m )  +c  ( B `  m
) )  ~~  (
( card `  ( B `  m ) )  +o  ( card `  ( B `  m )
) ) )
14097, 97, 139syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( B `  m )  e.  Fin  ->  (
( B `  m
)  +c  ( B `
 m ) ) 
~~  ( ( card `  ( B `  m
) )  +o  ( card `  ( B `  m ) ) ) )
141 ensym 6926 . . . . . . . . . . . . 13  |-  ( ( ( B `  m
)  +c  ( B `
 m ) ) 
~~  ( ( card `  ( B `  m
) )  +o  ( card `  ( B `  m ) ) )  ->  ( ( card `  ( B `  m
) )  +o  ( card `  ( B `  m ) ) ) 
~~  ( ( B `
 m )  +c  ( B `  m
) ) )
142140, 141syl 15 . . . . . . . . . . . 12  |-  ( ( B `  m )  e.  Fin  ->  (
( card `  ( B `  m ) )  +o  ( card `  ( B `  m )
) )  ~~  (
( B `  m
)  +c  ( B `
 m ) ) )
143142adantl 452 . . . . . . . . . . 11  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  ( ( card `  ( B `  m
) )  +o  ( card `  ( B `  m ) ) ) 
~~  ( ( B `
 m )  +c  ( B `  m
) ) )
144 sdomentr 7011 . . . . . . . . . . 11  |-  ( ( ( U_ k  e.  m  ( B `  k )  +c  ( B `  m )
)  ~<  ( ( card `  ( B `  m
) )  +o  ( card `  ( B `  m ) ) )  /\  ( ( card `  ( B `  m
) )  +o  ( card `  ( B `  m ) ) ) 
~~  ( ( B `
 m )  +c  ( B `  m
) ) )  -> 
( U_ k  e.  m  ( B `  k )  +c  ( B `  m ) )  ~< 
( ( B `  m )  +c  ( B `  m )
) )
145138, 143, 144syl2anc 642 . . . . . . . . . 10  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  ( U_ k  e.  m  ( B `  k )  +c  ( B `  m )
)  ~<  ( ( B `
 m )  +c  ( B `  m
) ) )
146 domsdomtr 7012 . . . . . . . . . 10  |-  ( (
U_ k  e.  suc  m ( B `  k )  ~<_  ( U_ k  e.  m  ( B `  k )  +c  ( B `  m
) )  /\  ( U_ k  e.  m  ( B `  k )  +c  ( B `  m ) )  ~< 
( ( B `  m )  +c  ( B `  m )
) )  ->  U_ k  e.  suc  m ( B `
 k )  ~< 
( ( B `  m )  +c  ( B `  m )
) )
14790, 145, 146sylancr 644 . . . . . . . . 9  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  U_ k  e.  suc  m ( B `  k )  ~<  (
( B `  m
)  +c  ( B `
 m ) ) )
148147expcom 424 . . . . . . . 8  |-  ( ( B `  m )  e.  Fin  ->  ( U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  ->  U_ k  e. 
suc  m ( B `
 k )  ~< 
( ( B `  m )  +c  ( B `  m )
) ) )
14983, 148syl 15 . . . . . . 7  |-  ( ( m  e.  om  /\  A. k  e.  suc  suc  m ( B `  k )  ~~  ~P k )  ->  ( U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  ->  U_ k  e. 
suc  m ( B `
 k )  ~< 
( ( B `  m )  +c  ( B `  m )
) ) )
150 sdomentr 7011 . . . . . . . 8  |-  ( (
U_ k  e.  suc  m ( B `  k )  ~<  (
( B `  m
)  +c  ( B `
 m ) )  /\  ( ( B `
 m )  +c  ( B `  m
) )  ~~  ( B `  suc  m ) )  ->  U_ k  e. 
suc  m ( B `
 k )  ~< 
( B `  suc  m ) )
151150expcom 424 . . . . . . 7  |-  ( ( ( B `  m
)  +c  ( B `
 m ) ) 
~~  ( B `  suc  m )  ->  ( U_ k  e.  suc  m ( B `  k )  ~<  (
( B `  m
)  +c  ( B `
 m ) )  ->  U_ k  e.  suc  m ( B `  k )  ~<  ( B `  suc  m ) ) )
15273, 149, 151sylsyld 52 . . . . . 6  |-  ( ( m  e.  om  /\  A. k  e.  suc  suc  m ( B `  k )  ~~  ~P k )  ->  ( U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  ->  U_ k  e. 
suc  m ( B `
 k )  ~< 
( B `  suc  m ) ) )
15338, 152syld 40 . . . . 5  |-  ( ( m  e.  om  /\  A. k  e.  suc  suc  m ( B `  k )  ~~  ~P k )  ->  (
( A. k  e. 
suc  m ( B `
 k )  ~~  ~P k  ->  U_ k  e.  m  ( B `  k )  ~<  ( B `  m )
)  ->  U_ k  e. 
suc  m ( B `
 k )  ~< 
( B `  suc  m ) ) )
154153ex 423 . . . 4  |-  ( m  e.  om  ->  ( A. k  e.  suc  suc  m ( B `  k )  ~~  ~P k  ->  ( ( A. k  e.  suc  m ( B `  k ) 
~~  ~P k  ->  U_ k  e.  m  ( B `  k )  ~<  ( B `  m )
)  ->  U_ k  e. 
suc  m ( B `
 k )  ~< 
( B `  suc  m ) ) ) )
155154com23 72 . . 3  |-  ( m  e.  om  ->  (
( A. k  e. 
suc  m ( B `
 k )  ~~  ~P k  ->  U_ k  e.  m  ( B `  k )  ~<  ( B `  m )
)  ->  ( A. k  e.  suc  suc  m
( B `  k
)  ~~  ~P k  ->  U_ k  e.  suc  m ( B `  k )  ~<  ( B `  suc  m ) ) ) )
1566, 12, 18, 32, 155finds1 4701 . 2  |-  ( n  e.  om  ->  ( A. k  e.  suc  n ( B `  k )  ~~  ~P k  ->  U_ k  e.  n  ( B `  k ) 
~<  ( B `  n
) ) )
157156imp 418 1  |-  ( ( n  e.  om  /\  A. k  e.  suc  n
( B `  k
)  ~~  ~P k
)  ->  U_ k  e.  n  ( B `  k )  ~<  ( B `  n )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   _Vcvv 2801    u. cun 3163    C_ wss 3165   (/)c0 3468   ~Pcpw 3638   U_ciun 3921   class class class wbr 4039   Ord word 4407   Oncon0 4408   suc csuc 4410   omcom 4672   dom cdm 4705   ` cfv 5271  (class class class)co 5874   1oc1o 6488    +o coa 6492    ~~ cen 6876    ~<_ cdom 6877    ~< csdm 6878   Fincfn 6879   cardccrd 7584    +c ccda 7809
This theorem is referenced by:  domtriomlem  8084
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-card 7588  df-cda 7810
  Copyright terms: Public domain W3C validator