MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsle Structured version   Unicode version

Theorem pwsle 13714
Description: Ordering in a structure power. (Contributed by Mario Carneiro, 16-Aug-2015.)
Hypotheses
Ref Expression
pwsle.y  |-  Y  =  ( R  ^s  I )
pwsle.v  |-  B  =  ( Base `  Y
)
pwsle.o  |-  O  =  ( le `  R
)
pwsle.l  |-  .<_  =  ( le `  Y )
Assertion
Ref Expression
pwsle  |-  ( ( R  e.  V  /\  I  e.  W )  -> 
.<_  =  (  o R O  i^i  ( B  X.  B ) ) )

Proof of Theorem pwsle
Dummy variables  f 
g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2959 . . . . . . 7  |-  f  e. 
_V
2 vex 2959 . . . . . . 7  |-  g  e. 
_V
31, 2prss 3952 . . . . . 6  |-  ( ( f  e.  B  /\  g  e.  B )  <->  { f ,  g } 
C_  B )
4 pwsle.v . . . . . . . 8  |-  B  =  ( Base `  Y
)
5 pwsle.y . . . . . . . . . 10  |-  Y  =  ( R  ^s  I )
6 eqid 2436 . . . . . . . . . 10  |-  (Scalar `  R )  =  (Scalar `  R )
75, 6pwsval 13708 . . . . . . . . 9  |-  ( ( R  e.  V  /\  I  e.  W )  ->  Y  =  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )
87fveq2d 5732 . . . . . . . 8  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( Base `  Y
)  =  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )
94, 8syl5eq 2480 . . . . . . 7  |-  ( ( R  e.  V  /\  I  e.  W )  ->  B  =  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )
109sseq2d 3376 . . . . . 6  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( { f ,  g }  C_  B  <->  { f ,  g } 
C_  ( Base `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) ) ) )
113, 10syl5bb 249 . . . . 5  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( ( f  e.  B  /\  g  e.  B )  <->  { f ,  g }  C_  ( Base `  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) ) ) )
1211anbi1d 686 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( ( ( f  e.  B  /\  g  e.  B )  /\  A. x  e.  I  (
f `  x )
( le `  (
( I  X.  { R } ) `  x
) ) ( g `
 x ) )  <-> 
( { f ,  g }  C_  ( Base `  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )  /\  A. x  e.  I  ( f `  x ) ( le
`  ( ( I  X.  { R }
) `  x )
) ( g `  x ) ) ) )
13 simpll 731 . . . . . . . . . . . 12  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  ->  R  e.  V )
14 fvconst2g 5945 . . . . . . . . . . . 12  |-  ( ( R  e.  V  /\  x  e.  I )  ->  ( ( I  X.  { R } ) `  x )  =  R )
1513, 14sylan 458 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  V  /\  I  e.  W )  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  (
( I  X.  { R } ) `  x
)  =  R )
1615fveq2d 5732 . . . . . . . . . 10  |-  ( ( ( ( R  e.  V  /\  I  e.  W )  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  ( le `  ( ( I  X.  { R }
) `  x )
)  =  ( le
`  R ) )
17 pwsle.o . . . . . . . . . 10  |-  O  =  ( le `  R
)
1816, 17syl6eqr 2486 . . . . . . . . 9  |-  ( ( ( ( R  e.  V  /\  I  e.  W )  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  ( le `  ( ( I  X.  { R }
) `  x )
)  =  O )
1918breqd 4223 . . . . . . . 8  |-  ( ( ( ( R  e.  V  /\  I  e.  W )  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  (
( f `  x
) ( le `  ( ( I  X.  { R } ) `  x ) ) ( g `  x )  <-> 
( f `  x
) O ( g `
 x ) ) )
2019ralbidva 2721 . . . . . . 7  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( A. x  e.  I  ( f `  x ) ( le
`  ( ( I  X.  { R }
) `  x )
) ( g `  x )  <->  A. x  e.  I  ( f `  x ) O ( g `  x ) ) )
21 eqid 2436 . . . . . . . . . 10  |-  ( Base `  R )  =  (
Base `  R )
22 simplr 732 . . . . . . . . . 10  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  ->  I  e.  W )
23 simprl 733 . . . . . . . . . 10  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
f  e.  B )
245, 21, 4, 13, 22, 23pwselbas 13711 . . . . . . . . 9  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
f : I --> ( Base `  R ) )
25 ffn 5591 . . . . . . . . 9  |-  ( f : I --> ( Base `  R )  ->  f  Fn  I )
2624, 25syl 16 . . . . . . . 8  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
f  Fn  I )
27 simprr 734 . . . . . . . . . 10  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
g  e.  B )
285, 21, 4, 13, 22, 27pwselbas 13711 . . . . . . . . 9  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
g : I --> ( Base `  R ) )
29 ffn 5591 . . . . . . . . 9  |-  ( g : I --> ( Base `  R )  ->  g  Fn  I )
3028, 29syl 16 . . . . . . . 8  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
g  Fn  I )
31 inidm 3550 . . . . . . . 8  |-  ( I  i^i  I )  =  I
32 eqidd 2437 . . . . . . . 8  |-  ( ( ( ( R  e.  V  /\  I  e.  W )  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  (
f `  x )  =  ( f `  x ) )
33 eqidd 2437 . . . . . . . 8  |-  ( ( ( ( R  e.  V  /\  I  e.  W )  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  (
g `  x )  =  ( g `  x ) )
3426, 30, 22, 22, 31, 32, 33ofrfval 6313 . . . . . . 7  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f  o R O g  <->  A. x  e.  I  ( f `  x ) O ( g `  x ) ) )
3520, 34bitr4d 248 . . . . . 6  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( A. x  e.  I  ( f `  x ) ( le
`  ( ( I  X.  { R }
) `  x )
) ( g `  x )  <->  f  o R O g ) )
3635pm5.32da 623 . . . . 5  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( ( ( f  e.  B  /\  g  e.  B )  /\  A. x  e.  I  (
f `  x )
( le `  (
( I  X.  { R } ) `  x
) ) ( g `
 x ) )  <-> 
( ( f  e.  B  /\  g  e.  B )  /\  f  o R O g ) ) )
37 brinxp2 4939 . . . . . 6  |-  ( f (  o R O  i^i  ( B  X.  B ) ) g  <-> 
( f  e.  B  /\  g  e.  B  /\  f  o R O g ) )
38 df-3an 938 . . . . . 6  |-  ( ( f  e.  B  /\  g  e.  B  /\  f  o R O g )  <->  ( ( f  e.  B  /\  g  e.  B )  /\  f  o R O g ) )
3937, 38bitri 241 . . . . 5  |-  ( f (  o R O  i^i  ( B  X.  B ) ) g  <-> 
( ( f  e.  B  /\  g  e.  B )  /\  f  o R O g ) )
4036, 39syl6bbr 255 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( ( ( f  e.  B  /\  g  e.  B )  /\  A. x  e.  I  (
f `  x )
( le `  (
( I  X.  { R } ) `  x
) ) ( g `
 x ) )  <-> 
f (  o R O  i^i  ( B  X.  B ) ) g ) )
4112, 40bitr3d 247 . . 3  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( ( { f ,  g }  C_  ( Base `  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )  /\  A. x  e.  I  ( f `  x ) ( le
`  ( ( I  X.  { R }
) `  x )
) ( g `  x ) )  <->  f (  o R O  i^i  ( B  X.  B ) ) g ) )
4241opabbidv 4271 . 2  |-  ( ( R  e.  V  /\  I  e.  W )  ->  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  ( Base `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) )  /\  A. x  e.  I  ( f `  x ) ( le
`  ( ( I  X.  { R }
) `  x )
) ( g `  x ) ) }  =  { <. f ,  g >.  |  f (  o R O  i^i  ( B  X.  B ) ) g } )
43 pwsle.l . . . 4  |-  .<_  =  ( le `  Y )
447fveq2d 5732 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( le `  Y
)  =  ( le
`  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) ) )
4543, 44syl5eq 2480 . . 3  |-  ( ( R  e.  V  /\  I  e.  W )  -> 
.<_  =  ( le `  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) ) )
46 eqid 2436 . . . 4  |-  ( (Scalar `  R ) X_s ( I  X.  { R } ) )  =  ( (Scalar `  R
) X_s ( I  X.  { R } ) )
47 fvex 5742 . . . . 5  |-  (Scalar `  R )  e.  _V
4847a1i 11 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  (Scalar `  R )  e.  _V )
49 simpr 448 . . . . 5  |-  ( ( R  e.  V  /\  I  e.  W )  ->  I  e.  W )
50 snex 4405 . . . . 5  |-  { R }  e.  _V
51 xpexg 4989 . . . . 5  |-  ( ( I  e.  W  /\  { R }  e.  _V )  ->  ( I  X.  { R } )  e. 
_V )
5249, 50, 51sylancl 644 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( I  X.  { R } )  e.  _V )
53 eqid 2436 . . . 4  |-  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) )  =  ( Base `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) )
54 snnzg 3921 . . . . . 6  |-  ( R  e.  V  ->  { R }  =/=  (/) )
5554adantr 452 . . . . 5  |-  ( ( R  e.  V  /\  I  e.  W )  ->  { R }  =/=  (/) )
56 dmxp 5088 . . . . 5  |-  ( { R }  =/=  (/)  ->  dom  ( I  X.  { R } )  =  I )
5755, 56syl 16 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  dom  ( I  X.  { R } )  =  I )
58 eqid 2436 . . . 4  |-  ( le
`  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )  =  ( le `  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )
5946, 48, 52, 53, 57, 58prdsle 13684 . . 3  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( le `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) )  =  { <. f ,  g >.  |  ( { f ,  g }  C_  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) )  /\  A. x  e.  I  ( f `  x ) ( le
`  ( ( I  X.  { R }
) `  x )
) ( g `  x ) ) } )
6045, 59eqtrd 2468 . 2  |-  ( ( R  e.  V  /\  I  e.  W )  -> 
.<_  =  { <. f ,  g >.  |  ( { f ,  g }  C_  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) )  /\  A. x  e.  I  ( f `  x ) ( le
`  ( ( I  X.  { R }
) `  x )
) ( g `  x ) ) } )
61 inss2 3562 . . . . 5  |-  (  o R O  i^i  ( B  X.  B ) ) 
C_  ( B  X.  B )
62 relxp 4983 . . . . 5  |-  Rel  ( B  X.  B )
63 relss 4963 . . . . 5  |-  ( (  o R O  i^i  ( B  X.  B
) )  C_  ( B  X.  B )  -> 
( Rel  ( B  X.  B )  ->  Rel  (  o R O  i^i  ( B  X.  B
) ) ) )
6461, 62, 63mp2 9 . . . 4  |-  Rel  (  o R O  i^i  ( B  X.  B ) )
6564a1i 11 . . 3  |-  ( ( R  e.  V  /\  I  e.  W )  ->  Rel  (  o R O  i^i  ( B  X.  B ) ) )
66 dfrel4v 5322 . . 3  |-  ( Rel  (  o R O  i^i  ( B  X.  B ) )  <->  (  o R O  i^i  ( B  X.  B ) )  =  { <. f ,  g >.  |  f (  o R O  i^i  ( B  X.  B ) ) g } )
6765, 66sylib 189 . 2  |-  ( ( R  e.  V  /\  I  e.  W )  ->  (  o R O  i^i  ( B  X.  B ) )  =  { <. f ,  g
>.  |  f (  o R O  i^i  ( B  X.  B ) ) g } )
6842, 60, 673eqtr4d 2478 1  |-  ( ( R  e.  V  /\  I  e.  W )  -> 
.<_  =  (  o R O  i^i  ( B  X.  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2599   A.wral 2705   _Vcvv 2956    i^i cin 3319    C_ wss 3320   (/)c0 3628   {csn 3814   {cpr 3815   class class class wbr 4212   {copab 4265    X. cxp 4876   dom cdm 4878   Rel wrel 4883    Fn wfn 5449   -->wf 5450   ` cfv 5454  (class class class)co 6081    o Rcofr 6304   Basecbs 13469  Scalarcsca 13532   lecple 13536   X_scprds 13669    ^s cpws 13670
This theorem is referenced by:  pwsleval  13715
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-ofr 6306  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-er 6905  df-map 7020  df-ixp 7064  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-sup 7446  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-fz 11044  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-plusg 13542  df-mulr 13543  df-sca 13545  df-vsca 13546  df-tset 13548  df-ple 13549  df-ds 13551  df-hom 13553  df-cco 13554  df-prds 13671  df-pws 13673
  Copyright terms: Public domain W3C validator