MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsle Unicode version

Theorem pwsle 13391
Description: Ordering in a structure power. (Contributed by Mario Carneiro, 16-Aug-2015.)
Hypotheses
Ref Expression
pwsle.y  |-  Y  =  ( R  ^s  I )
pwsle.v  |-  B  =  ( Base `  Y
)
pwsle.o  |-  O  =  ( le `  R
)
pwsle.l  |-  .<_  =  ( le `  Y )
Assertion
Ref Expression
pwsle  |-  ( ( R  e.  V  /\  I  e.  W )  -> 
.<_  =  (  o R O  i^i  ( B  X.  B ) ) )

Proof of Theorem pwsle
Dummy variables  f 
g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2791 . . . . . . 7  |-  f  e. 
_V
2 vex 2791 . . . . . . 7  |-  g  e. 
_V
31, 2prss 3769 . . . . . 6  |-  ( ( f  e.  B  /\  g  e.  B )  <->  { f ,  g } 
C_  B )
4 pwsle.v . . . . . . . 8  |-  B  =  ( Base `  Y
)
5 pwsle.y . . . . . . . . . 10  |-  Y  =  ( R  ^s  I )
6 eqid 2283 . . . . . . . . . 10  |-  (Scalar `  R )  =  (Scalar `  R )
75, 6pwsval 13385 . . . . . . . . 9  |-  ( ( R  e.  V  /\  I  e.  W )  ->  Y  =  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )
87fveq2d 5529 . . . . . . . 8  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( Base `  Y
)  =  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )
94, 8syl5eq 2327 . . . . . . 7  |-  ( ( R  e.  V  /\  I  e.  W )  ->  B  =  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )
109sseq2d 3206 . . . . . 6  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( { f ,  g }  C_  B  <->  { f ,  g } 
C_  ( Base `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) ) ) )
113, 10syl5bb 248 . . . . 5  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( ( f  e.  B  /\  g  e.  B )  <->  { f ,  g }  C_  ( Base `  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) ) ) )
1211anbi1d 685 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( ( ( f  e.  B  /\  g  e.  B )  /\  A. x  e.  I  (
f `  x )
( le `  (
( I  X.  { R } ) `  x
) ) ( g `
 x ) )  <-> 
( { f ,  g }  C_  ( Base `  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )  /\  A. x  e.  I  ( f `  x ) ( le
`  ( ( I  X.  { R }
) `  x )
) ( g `  x ) ) ) )
13 simpll 730 . . . . . . . . . . . 12  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  ->  R  e.  V )
14 fvconst2g 5727 . . . . . . . . . . . 12  |-  ( ( R  e.  V  /\  x  e.  I )  ->  ( ( I  X.  { R } ) `  x )  =  R )
1513, 14sylan 457 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  V  /\  I  e.  W )  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  (
( I  X.  { R } ) `  x
)  =  R )
1615fveq2d 5529 . . . . . . . . . 10  |-  ( ( ( ( R  e.  V  /\  I  e.  W )  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  ( le `  ( ( I  X.  { R }
) `  x )
)  =  ( le
`  R ) )
17 pwsle.o . . . . . . . . . 10  |-  O  =  ( le `  R
)
1816, 17syl6eqr 2333 . . . . . . . . 9  |-  ( ( ( ( R  e.  V  /\  I  e.  W )  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  ( le `  ( ( I  X.  { R }
) `  x )
)  =  O )
1918breqd 4034 . . . . . . . 8  |-  ( ( ( ( R  e.  V  /\  I  e.  W )  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  (
( f `  x
) ( le `  ( ( I  X.  { R } ) `  x ) ) ( g `  x )  <-> 
( f `  x
) O ( g `
 x ) ) )
2019ralbidva 2559 . . . . . . 7  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( A. x  e.  I  ( f `  x ) ( le
`  ( ( I  X.  { R }
) `  x )
) ( g `  x )  <->  A. x  e.  I  ( f `  x ) O ( g `  x ) ) )
21 eqid 2283 . . . . . . . . . 10  |-  ( Base `  R )  =  (
Base `  R )
22 simplr 731 . . . . . . . . . 10  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  ->  I  e.  W )
23 simprl 732 . . . . . . . . . 10  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
f  e.  B )
245, 21, 4, 13, 22, 23pwselbas 13388 . . . . . . . . 9  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
f : I --> ( Base `  R ) )
25 ffn 5389 . . . . . . . . 9  |-  ( f : I --> ( Base `  R )  ->  f  Fn  I )
2624, 25syl 15 . . . . . . . 8  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
f  Fn  I )
27 simprr 733 . . . . . . . . . 10  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
g  e.  B )
285, 21, 4, 13, 22, 27pwselbas 13388 . . . . . . . . 9  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
g : I --> ( Base `  R ) )
29 ffn 5389 . . . . . . . . 9  |-  ( g : I --> ( Base `  R )  ->  g  Fn  I )
3028, 29syl 15 . . . . . . . 8  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
g  Fn  I )
31 inidm 3378 . . . . . . . 8  |-  ( I  i^i  I )  =  I
32 eqidd 2284 . . . . . . . 8  |-  ( ( ( ( R  e.  V  /\  I  e.  W )  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  (
f `  x )  =  ( f `  x ) )
33 eqidd 2284 . . . . . . . 8  |-  ( ( ( ( R  e.  V  /\  I  e.  W )  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  (
g `  x )  =  ( g `  x ) )
3426, 30, 22, 22, 31, 32, 33ofrfval 6086 . . . . . . 7  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f  o R O g  <->  A. x  e.  I  ( f `  x ) O ( g `  x ) ) )
3520, 34bitr4d 247 . . . . . 6  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( A. x  e.  I  ( f `  x ) ( le
`  ( ( I  X.  { R }
) `  x )
) ( g `  x )  <->  f  o R O g ) )
3635pm5.32da 622 . . . . 5  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( ( ( f  e.  B  /\  g  e.  B )  /\  A. x  e.  I  (
f `  x )
( le `  (
( I  X.  { R } ) `  x
) ) ( g `
 x ) )  <-> 
( ( f  e.  B  /\  g  e.  B )  /\  f  o R O g ) ) )
37 brinxp2 4751 . . . . . 6  |-  ( f (  o R O  i^i  ( B  X.  B ) ) g  <-> 
( f  e.  B  /\  g  e.  B  /\  f  o R O g ) )
38 df-3an 936 . . . . . 6  |-  ( ( f  e.  B  /\  g  e.  B  /\  f  o R O g )  <->  ( ( f  e.  B  /\  g  e.  B )  /\  f  o R O g ) )
3937, 38bitri 240 . . . . 5  |-  ( f (  o R O  i^i  ( B  X.  B ) ) g  <-> 
( ( f  e.  B  /\  g  e.  B )  /\  f  o R O g ) )
4036, 39syl6bbr 254 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( ( ( f  e.  B  /\  g  e.  B )  /\  A. x  e.  I  (
f `  x )
( le `  (
( I  X.  { R } ) `  x
) ) ( g `
 x ) )  <-> 
f (  o R O  i^i  ( B  X.  B ) ) g ) )
4112, 40bitr3d 246 . . 3  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( ( { f ,  g }  C_  ( Base `  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )  /\  A. x  e.  I  ( f `  x ) ( le
`  ( ( I  X.  { R }
) `  x )
) ( g `  x ) )  <->  f (  o R O  i^i  ( B  X.  B ) ) g ) )
4241opabbidv 4082 . 2  |-  ( ( R  e.  V  /\  I  e.  W )  ->  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  ( Base `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) )  /\  A. x  e.  I  ( f `  x ) ( le
`  ( ( I  X.  { R }
) `  x )
) ( g `  x ) ) }  =  { <. f ,  g >.  |  f (  o R O  i^i  ( B  X.  B ) ) g } )
43 pwsle.l . . . 4  |-  .<_  =  ( le `  Y )
447fveq2d 5529 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( le `  Y
)  =  ( le
`  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) ) )
4543, 44syl5eq 2327 . . 3  |-  ( ( R  e.  V  /\  I  e.  W )  -> 
.<_  =  ( le `  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) ) )
46 eqid 2283 . . . 4  |-  ( (Scalar `  R ) X_s ( I  X.  { R } ) )  =  ( (Scalar `  R
) X_s ( I  X.  { R } ) )
47 fvex 5539 . . . . 5  |-  (Scalar `  R )  e.  _V
4847a1i 10 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  (Scalar `  R )  e.  _V )
49 simpr 447 . . . . 5  |-  ( ( R  e.  V  /\  I  e.  W )  ->  I  e.  W )
50 snex 4216 . . . . 5  |-  { R }  e.  _V
51 xpexg 4800 . . . . 5  |-  ( ( I  e.  W  /\  { R }  e.  _V )  ->  ( I  X.  { R } )  e. 
_V )
5249, 50, 51sylancl 643 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( I  X.  { R } )  e.  _V )
53 eqid 2283 . . . 4  |-  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) )  =  ( Base `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) )
54 snnzg 3743 . . . . . 6  |-  ( R  e.  V  ->  { R }  =/=  (/) )
5554adantr 451 . . . . 5  |-  ( ( R  e.  V  /\  I  e.  W )  ->  { R }  =/=  (/) )
56 dmxp 4897 . . . . 5  |-  ( { R }  =/=  (/)  ->  dom  ( I  X.  { R } )  =  I )
5755, 56syl 15 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  dom  ( I  X.  { R } )  =  I )
58 eqid 2283 . . . 4  |-  ( le
`  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )  =  ( le `  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )
5946, 48, 52, 53, 57, 58prdsle 13361 . . 3  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( le `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) )  =  { <. f ,  g >.  |  ( { f ,  g }  C_  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) )  /\  A. x  e.  I  ( f `  x ) ( le
`  ( ( I  X.  { R }
) `  x )
) ( g `  x ) ) } )
6045, 59eqtrd 2315 . 2  |-  ( ( R  e.  V  /\  I  e.  W )  -> 
.<_  =  { <. f ,  g >.  |  ( { f ,  g }  C_  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) )  /\  A. x  e.  I  ( f `  x ) ( le
`  ( ( I  X.  { R }
) `  x )
) ( g `  x ) ) } )
61 inss2 3390 . . . . 5  |-  (  o R O  i^i  ( B  X.  B ) ) 
C_  ( B  X.  B )
62 relxp 4794 . . . . 5  |-  Rel  ( B  X.  B )
63 relss 4775 . . . . 5  |-  ( (  o R O  i^i  ( B  X.  B
) )  C_  ( B  X.  B )  -> 
( Rel  ( B  X.  B )  ->  Rel  (  o R O  i^i  ( B  X.  B
) ) ) )
6461, 62, 63mp2 17 . . . 4  |-  Rel  (  o R O  i^i  ( B  X.  B ) )
6564a1i 10 . . 3  |-  ( ( R  e.  V  /\  I  e.  W )  ->  Rel  (  o R O  i^i  ( B  X.  B ) ) )
66 dfrel4v 5125 . . 3  |-  ( Rel  (  o R O  i^i  ( B  X.  B ) )  <->  (  o R O  i^i  ( B  X.  B ) )  =  { <. f ,  g >.  |  f (  o R O  i^i  ( B  X.  B ) ) g } )
6765, 66sylib 188 . 2  |-  ( ( R  e.  V  /\  I  e.  W )  ->  (  o R O  i^i  ( B  X.  B ) )  =  { <. f ,  g
>.  |  f (  o R O  i^i  ( B  X.  B ) ) g } )
6842, 60, 673eqtr4d 2325 1  |-  ( ( R  e.  V  /\  I  e.  W )  -> 
.<_  =  (  o R O  i^i  ( B  X.  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   _Vcvv 2788    i^i cin 3151    C_ wss 3152   (/)c0 3455   {csn 3640   {cpr 3641   class class class wbr 4023   {copab 4076    X. cxp 4687   dom cdm 4689   Rel wrel 4694    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858    o Rcofr 6077   Basecbs 13148  Scalarcsca 13211   lecple 13215   X_scprds 13346    ^s cpws 13347
This theorem is referenced by:  pwsleval  13392
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-ofr 6079  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-fz 10783  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-plusg 13221  df-mulr 13222  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-prds 13348  df-pws 13350
  Copyright terms: Public domain W3C validator