MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsle Unicode version

Theorem pwsle 13669
Description: Ordering in a structure power. (Contributed by Mario Carneiro, 16-Aug-2015.)
Hypotheses
Ref Expression
pwsle.y  |-  Y  =  ( R  ^s  I )
pwsle.v  |-  B  =  ( Base `  Y
)
pwsle.o  |-  O  =  ( le `  R
)
pwsle.l  |-  .<_  =  ( le `  Y )
Assertion
Ref Expression
pwsle  |-  ( ( R  e.  V  /\  I  e.  W )  -> 
.<_  =  (  o R O  i^i  ( B  X.  B ) ) )

Proof of Theorem pwsle
Dummy variables  f 
g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2919 . . . . . . 7  |-  f  e. 
_V
2 vex 2919 . . . . . . 7  |-  g  e. 
_V
31, 2prss 3912 . . . . . 6  |-  ( ( f  e.  B  /\  g  e.  B )  <->  { f ,  g } 
C_  B )
4 pwsle.v . . . . . . . 8  |-  B  =  ( Base `  Y
)
5 pwsle.y . . . . . . . . . 10  |-  Y  =  ( R  ^s  I )
6 eqid 2404 . . . . . . . . . 10  |-  (Scalar `  R )  =  (Scalar `  R )
75, 6pwsval 13663 . . . . . . . . 9  |-  ( ( R  e.  V  /\  I  e.  W )  ->  Y  =  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )
87fveq2d 5691 . . . . . . . 8  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( Base `  Y
)  =  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )
94, 8syl5eq 2448 . . . . . . 7  |-  ( ( R  e.  V  /\  I  e.  W )  ->  B  =  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )
109sseq2d 3336 . . . . . 6  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( { f ,  g }  C_  B  <->  { f ,  g } 
C_  ( Base `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) ) ) )
113, 10syl5bb 249 . . . . 5  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( ( f  e.  B  /\  g  e.  B )  <->  { f ,  g }  C_  ( Base `  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) ) ) )
1211anbi1d 686 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( ( ( f  e.  B  /\  g  e.  B )  /\  A. x  e.  I  (
f `  x )
( le `  (
( I  X.  { R } ) `  x
) ) ( g `
 x ) )  <-> 
( { f ,  g }  C_  ( Base `  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )  /\  A. x  e.  I  ( f `  x ) ( le
`  ( ( I  X.  { R }
) `  x )
) ( g `  x ) ) ) )
13 simpll 731 . . . . . . . . . . . 12  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  ->  R  e.  V )
14 fvconst2g 5904 . . . . . . . . . . . 12  |-  ( ( R  e.  V  /\  x  e.  I )  ->  ( ( I  X.  { R } ) `  x )  =  R )
1513, 14sylan 458 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  V  /\  I  e.  W )  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  (
( I  X.  { R } ) `  x
)  =  R )
1615fveq2d 5691 . . . . . . . . . 10  |-  ( ( ( ( R  e.  V  /\  I  e.  W )  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  ( le `  ( ( I  X.  { R }
) `  x )
)  =  ( le
`  R ) )
17 pwsle.o . . . . . . . . . 10  |-  O  =  ( le `  R
)
1816, 17syl6eqr 2454 . . . . . . . . 9  |-  ( ( ( ( R  e.  V  /\  I  e.  W )  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  ( le `  ( ( I  X.  { R }
) `  x )
)  =  O )
1918breqd 4183 . . . . . . . 8  |-  ( ( ( ( R  e.  V  /\  I  e.  W )  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  (
( f `  x
) ( le `  ( ( I  X.  { R } ) `  x ) ) ( g `  x )  <-> 
( f `  x
) O ( g `
 x ) ) )
2019ralbidva 2682 . . . . . . 7  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( A. x  e.  I  ( f `  x ) ( le
`  ( ( I  X.  { R }
) `  x )
) ( g `  x )  <->  A. x  e.  I  ( f `  x ) O ( g `  x ) ) )
21 eqid 2404 . . . . . . . . . 10  |-  ( Base `  R )  =  (
Base `  R )
22 simplr 732 . . . . . . . . . 10  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  ->  I  e.  W )
23 simprl 733 . . . . . . . . . 10  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
f  e.  B )
245, 21, 4, 13, 22, 23pwselbas 13666 . . . . . . . . 9  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
f : I --> ( Base `  R ) )
25 ffn 5550 . . . . . . . . 9  |-  ( f : I --> ( Base `  R )  ->  f  Fn  I )
2624, 25syl 16 . . . . . . . 8  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
f  Fn  I )
27 simprr 734 . . . . . . . . . 10  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
g  e.  B )
285, 21, 4, 13, 22, 27pwselbas 13666 . . . . . . . . 9  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
g : I --> ( Base `  R ) )
29 ffn 5550 . . . . . . . . 9  |-  ( g : I --> ( Base `  R )  ->  g  Fn  I )
3028, 29syl 16 . . . . . . . 8  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
g  Fn  I )
31 inidm 3510 . . . . . . . 8  |-  ( I  i^i  I )  =  I
32 eqidd 2405 . . . . . . . 8  |-  ( ( ( ( R  e.  V  /\  I  e.  W )  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  (
f `  x )  =  ( f `  x ) )
33 eqidd 2405 . . . . . . . 8  |-  ( ( ( ( R  e.  V  /\  I  e.  W )  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  (
g `  x )  =  ( g `  x ) )
3426, 30, 22, 22, 31, 32, 33ofrfval 6272 . . . . . . 7  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f  o R O g  <->  A. x  e.  I  ( f `  x ) O ( g `  x ) ) )
3520, 34bitr4d 248 . . . . . 6  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( A. x  e.  I  ( f `  x ) ( le
`  ( ( I  X.  { R }
) `  x )
) ( g `  x )  <->  f  o R O g ) )
3635pm5.32da 623 . . . . 5  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( ( ( f  e.  B  /\  g  e.  B )  /\  A. x  e.  I  (
f `  x )
( le `  (
( I  X.  { R } ) `  x
) ) ( g `
 x ) )  <-> 
( ( f  e.  B  /\  g  e.  B )  /\  f  o R O g ) ) )
37 brinxp2 4898 . . . . . 6  |-  ( f (  o R O  i^i  ( B  X.  B ) ) g  <-> 
( f  e.  B  /\  g  e.  B  /\  f  o R O g ) )
38 df-3an 938 . . . . . 6  |-  ( ( f  e.  B  /\  g  e.  B  /\  f  o R O g )  <->  ( ( f  e.  B  /\  g  e.  B )  /\  f  o R O g ) )
3937, 38bitri 241 . . . . 5  |-  ( f (  o R O  i^i  ( B  X.  B ) ) g  <-> 
( ( f  e.  B  /\  g  e.  B )  /\  f  o R O g ) )
4036, 39syl6bbr 255 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( ( ( f  e.  B  /\  g  e.  B )  /\  A. x  e.  I  (
f `  x )
( le `  (
( I  X.  { R } ) `  x
) ) ( g `
 x ) )  <-> 
f (  o R O  i^i  ( B  X.  B ) ) g ) )
4112, 40bitr3d 247 . . 3  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( ( { f ,  g }  C_  ( Base `  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )  /\  A. x  e.  I  ( f `  x ) ( le
`  ( ( I  X.  { R }
) `  x )
) ( g `  x ) )  <->  f (  o R O  i^i  ( B  X.  B ) ) g ) )
4241opabbidv 4231 . 2  |-  ( ( R  e.  V  /\  I  e.  W )  ->  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  ( Base `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) )  /\  A. x  e.  I  ( f `  x ) ( le
`  ( ( I  X.  { R }
) `  x )
) ( g `  x ) ) }  =  { <. f ,  g >.  |  f (  o R O  i^i  ( B  X.  B ) ) g } )
43 pwsle.l . . . 4  |-  .<_  =  ( le `  Y )
447fveq2d 5691 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( le `  Y
)  =  ( le
`  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) ) )
4543, 44syl5eq 2448 . . 3  |-  ( ( R  e.  V  /\  I  e.  W )  -> 
.<_  =  ( le `  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) ) )
46 eqid 2404 . . . 4  |-  ( (Scalar `  R ) X_s ( I  X.  { R } ) )  =  ( (Scalar `  R
) X_s ( I  X.  { R } ) )
47 fvex 5701 . . . . 5  |-  (Scalar `  R )  e.  _V
4847a1i 11 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  (Scalar `  R )  e.  _V )
49 simpr 448 . . . . 5  |-  ( ( R  e.  V  /\  I  e.  W )  ->  I  e.  W )
50 snex 4365 . . . . 5  |-  { R }  e.  _V
51 xpexg 4948 . . . . 5  |-  ( ( I  e.  W  /\  { R }  e.  _V )  ->  ( I  X.  { R } )  e. 
_V )
5249, 50, 51sylancl 644 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( I  X.  { R } )  e.  _V )
53 eqid 2404 . . . 4  |-  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) )  =  ( Base `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) )
54 snnzg 3881 . . . . . 6  |-  ( R  e.  V  ->  { R }  =/=  (/) )
5554adantr 452 . . . . 5  |-  ( ( R  e.  V  /\  I  e.  W )  ->  { R }  =/=  (/) )
56 dmxp 5047 . . . . 5  |-  ( { R }  =/=  (/)  ->  dom  ( I  X.  { R } )  =  I )
5755, 56syl 16 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  dom  ( I  X.  { R } )  =  I )
58 eqid 2404 . . . 4  |-  ( le
`  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )  =  ( le `  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )
5946, 48, 52, 53, 57, 58prdsle 13639 . . 3  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( le `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) )  =  { <. f ,  g >.  |  ( { f ,  g }  C_  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) )  /\  A. x  e.  I  ( f `  x ) ( le
`  ( ( I  X.  { R }
) `  x )
) ( g `  x ) ) } )
6045, 59eqtrd 2436 . 2  |-  ( ( R  e.  V  /\  I  e.  W )  -> 
.<_  =  { <. f ,  g >.  |  ( { f ,  g }  C_  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) )  /\  A. x  e.  I  ( f `  x ) ( le
`  ( ( I  X.  { R }
) `  x )
) ( g `  x ) ) } )
61 inss2 3522 . . . . 5  |-  (  o R O  i^i  ( B  X.  B ) ) 
C_  ( B  X.  B )
62 relxp 4942 . . . . 5  |-  Rel  ( B  X.  B )
63 relss 4922 . . . . 5  |-  ( (  o R O  i^i  ( B  X.  B
) )  C_  ( B  X.  B )  -> 
( Rel  ( B  X.  B )  ->  Rel  (  o R O  i^i  ( B  X.  B
) ) ) )
6461, 62, 63mp2 9 . . . 4  |-  Rel  (  o R O  i^i  ( B  X.  B ) )
6564a1i 11 . . 3  |-  ( ( R  e.  V  /\  I  e.  W )  ->  Rel  (  o R O  i^i  ( B  X.  B ) ) )
66 dfrel4v 5281 . . 3  |-  ( Rel  (  o R O  i^i  ( B  X.  B ) )  <->  (  o R O  i^i  ( B  X.  B ) )  =  { <. f ,  g >.  |  f (  o R O  i^i  ( B  X.  B ) ) g } )
6765, 66sylib 189 . 2  |-  ( ( R  e.  V  /\  I  e.  W )  ->  (  o R O  i^i  ( B  X.  B ) )  =  { <. f ,  g
>.  |  f (  o R O  i^i  ( B  X.  B ) ) g } )
6842, 60, 673eqtr4d 2446 1  |-  ( ( R  e.  V  /\  I  e.  W )  -> 
.<_  =  (  o R O  i^i  ( B  X.  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   _Vcvv 2916    i^i cin 3279    C_ wss 3280   (/)c0 3588   {csn 3774   {cpr 3775   class class class wbr 4172   {copab 4225    X. cxp 4835   dom cdm 4837   Rel wrel 4842    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6040    o Rcofr 6263   Basecbs 13424  Scalarcsca 13487   lecple 13491   X_scprds 13624    ^s cpws 13625
This theorem is referenced by:  pwsleval  13670
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-ofr 6265  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-fz 11000  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-plusg 13497  df-mulr 13498  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-hom 13508  df-cco 13509  df-prds 13626  df-pws 13628
  Copyright terms: Public domain W3C validator