MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsmgp Unicode version

Theorem pwsmgp 15417
Description: The multiplicative group of the power structure resembles the power of the multiplicative group. (Contributed by Mario Carneiro, 12-Mar-2015.)
Hypotheses
Ref Expression
pwsmgp.y  |-  Y  =  ( R  ^s  I )
pwsmgp.m  |-  M  =  (mulGrp `  R )
pwsmgp.z  |-  Z  =  ( M  ^s  I )
pwsmgp.n  |-  N  =  (mulGrp `  Y )
pwsmgp.b  |-  B  =  ( Base `  N
)
pwsmgp.c  |-  C  =  ( Base `  Z
)
pwsmgp.p  |-  .+  =  ( +g  `  N )
pwsmgp.q  |-  .+b  =  ( +g  `  Z )
Assertion
Ref Expression
pwsmgp  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( B  =  C  /\  .+  =  .+b  ) )

Proof of Theorem pwsmgp
StepHypRef Expression
1 eqid 2296 . . . . . 6  |-  ( (Scalar `  R ) X_s ( I  X.  { R } ) )  =  ( (Scalar `  R
) X_s ( I  X.  { R } ) )
2 eqid 2296 . . . . . 6  |-  (mulGrp `  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )  =  (mulGrp `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) )
3 eqid 2296 . . . . . 6  |-  ( (Scalar `  R ) X_s (mulGrp  o.  ( I  X.  { R } ) ) )  =  ( (Scalar `  R ) X_s (mulGrp 
o.  ( I  X.  { R } ) ) )
4 simpr 447 . . . . . 6  |-  ( ( R  e.  V  /\  I  e.  W )  ->  I  e.  W )
5 fvex 5555 . . . . . . 7  |-  (Scalar `  R )  e.  _V
65a1i 10 . . . . . 6  |-  ( ( R  e.  V  /\  I  e.  W )  ->  (Scalar `  R )  e.  _V )
7 fnconstg 5445 . . . . . . 7  |-  ( R  e.  V  ->  (
I  X.  { R } )  Fn  I
)
87adantr 451 . . . . . 6  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( I  X.  { R } )  Fn  I
)
91, 2, 3, 4, 6, 8prdsmgp 15409 . . . . 5  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( ( Base `  (mulGrp `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )  =  ( Base `  ( (Scalar `  R
) X_s (mulGrp  o.  ( I  X.  { R } ) ) ) )  /\  ( +g  `  (mulGrp `  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) ) )  =  ( +g  `  ( (Scalar `  R
) X_s (mulGrp  o.  ( I  X.  { R } ) ) ) ) ) )
109simpld 445 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( Base `  (mulGrp `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )  =  ( Base `  ( (Scalar `  R
) X_s (mulGrp  o.  ( I  X.  { R } ) ) ) ) )
11 pwsmgp.n . . . . . 6  |-  N  =  (mulGrp `  Y )
12 pwsmgp.y . . . . . . . 8  |-  Y  =  ( R  ^s  I )
13 eqid 2296 . . . . . . . 8  |-  (Scalar `  R )  =  (Scalar `  R )
1412, 13pwsval 13401 . . . . . . 7  |-  ( ( R  e.  V  /\  I  e.  W )  ->  Y  =  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )
1514fveq2d 5545 . . . . . 6  |-  ( ( R  e.  V  /\  I  e.  W )  ->  (mulGrp `  Y )  =  (mulGrp `  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) ) )
1611, 15syl5eq 2340 . . . . 5  |-  ( ( R  e.  V  /\  I  e.  W )  ->  N  =  (mulGrp `  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) ) )
1716fveq2d 5545 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( Base `  N
)  =  ( Base `  (mulGrp `  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) ) ) )
18 pwsmgp.z . . . . . 6  |-  Z  =  ( M  ^s  I )
19 pwsmgp.m . . . . . . . . 9  |-  M  =  (mulGrp `  R )
20 fvex 5555 . . . . . . . . 9  |-  (mulGrp `  R )  e.  _V
2119, 20eqeltri 2366 . . . . . . . 8  |-  M  e. 
_V
22 eqid 2296 . . . . . . . . 9  |-  ( M  ^s  I )  =  ( M  ^s  I )
23 eqid 2296 . . . . . . . . 9  |-  (Scalar `  M )  =  (Scalar `  M )
2422, 23pwsval 13401 . . . . . . . 8  |-  ( ( M  e.  _V  /\  I  e.  W )  ->  ( M  ^s  I )  =  ( (Scalar `  M ) X_s ( I  X.  { M } ) ) )
2521, 4, 24sylancr 644 . . . . . . 7  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( M  ^s  I )  =  ( (Scalar `  M ) X_s ( I  X.  { M } ) ) )
2619, 13mgpsca 15348 . . . . . . . . . 10  |-  (Scalar `  R )  =  (Scalar `  M )
2726eqcomi 2300 . . . . . . . . 9  |-  (Scalar `  M )  =  (Scalar `  R )
2827a1i 10 . . . . . . . 8  |-  ( ( R  e.  V  /\  I  e.  W )  ->  (Scalar `  M )  =  (Scalar `  R )
)
29 fnmgp 15343 . . . . . . . . . 10  |- mulGrp  Fn  _V
30 elex 2809 . . . . . . . . . . 11  |-  ( R  e.  V  ->  R  e.  _V )
3130adantr 451 . . . . . . . . . 10  |-  ( ( R  e.  V  /\  I  e.  W )  ->  R  e.  _V )
32 fcoconst 5711 . . . . . . . . . 10  |-  ( (mulGrp 
Fn  _V  /\  R  e. 
_V )  ->  (mulGrp  o.  ( I  X.  { R } ) )  =  ( I  X.  {
(mulGrp `  R ) } ) )
3329, 31, 32sylancr 644 . . . . . . . . 9  |-  ( ( R  e.  V  /\  I  e.  W )  ->  (mulGrp  o.  ( I  X.  { R } ) )  =  ( I  X.  { (mulGrp `  R ) } ) )
3419sneqi 3665 . . . . . . . . . 10  |-  { M }  =  { (mulGrp `  R ) }
3534xpeq2i 4726 . . . . . . . . 9  |-  ( I  X.  { M }
)  =  ( I  X.  { (mulGrp `  R ) } )
3633, 35syl6reqr 2347 . . . . . . . 8  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( I  X.  { M } )  =  (mulGrp 
o.  ( I  X.  { R } ) ) )
3728, 36oveq12d 5892 . . . . . . 7  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( (Scalar `  M
) X_s ( I  X.  { M } ) )  =  ( (Scalar `  R
) X_s (mulGrp  o.  ( I  X.  { R } ) ) ) )
3825, 37eqtrd 2328 . . . . . 6  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( M  ^s  I )  =  ( (Scalar `  R ) X_s (mulGrp  o.  ( I  X.  { R } ) ) ) )
3918, 38syl5eq 2340 . . . . 5  |-  ( ( R  e.  V  /\  I  e.  W )  ->  Z  =  ( (Scalar `  R ) X_s (mulGrp  o.  ( I  X.  { R } ) ) ) )
4039fveq2d 5545 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( Base `  Z
)  =  ( Base `  ( (Scalar `  R
) X_s (mulGrp  o.  ( I  X.  { R } ) ) ) ) )
4110, 17, 403eqtr4d 2338 . . 3  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( Base `  N
)  =  ( Base `  Z ) )
42 pwsmgp.b . . 3  |-  B  =  ( Base `  N
)
43 pwsmgp.c . . 3  |-  C  =  ( Base `  Z
)
4441, 42, 433eqtr4g 2353 . 2  |-  ( ( R  e.  V  /\  I  e.  W )  ->  B  =  C )
459simprd 449 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( +g  `  (mulGrp `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )  =  ( +g  `  ( (Scalar `  R
) X_s (mulGrp  o.  ( I  X.  { R } ) ) ) ) )
4616fveq2d 5545 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( +g  `  N
)  =  ( +g  `  (mulGrp `  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) ) ) )
4739fveq2d 5545 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( +g  `  Z
)  =  ( +g  `  ( (Scalar `  R
) X_s (mulGrp  o.  ( I  X.  { R } ) ) ) ) )
4845, 46, 473eqtr4d 2338 . . 3  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( +g  `  N
)  =  ( +g  `  Z ) )
49 pwsmgp.p . . 3  |-  .+  =  ( +g  `  N )
50 pwsmgp.q . . 3  |-  .+b  =  ( +g  `  Z )
5148, 49, 503eqtr4g 2353 . 2  |-  ( ( R  e.  V  /\  I  e.  W )  ->  .+  =  .+b  )
5244, 51jca 518 1  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( B  =  C  /\  .+  =  .+b  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   _Vcvv 2801   {csn 3653    X. cxp 4703    o. ccom 4709    Fn wfn 5266   ` cfv 5271  (class class class)co 5874   Basecbs 13164   +g cplusg 13224  Scalarcsca 13227   X_scprds 13362    ^s cpws 13363  mulGrpcmgp 15341
This theorem is referenced by:  pwsco1rhm  15526  pwsco2rhm  15527  pwsdiagrhm  15594  evl1expd  19437
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-fz 10799  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-plusg 13237  df-mulr 13238  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-prds 13364  df-pws 13366  df-mgp 15342
  Copyright terms: Public domain W3C validator