MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsmulrval Unicode version

Theorem pwsmulrval 13672
Description: Value of multiplication in a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
pwsplusgval.y  |-  Y  =  ( R  ^s  I )
pwsplusgval.b  |-  B  =  ( Base `  Y
)
pwsplusgval.r  |-  ( ph  ->  R  e.  V )
pwsplusgval.i  |-  ( ph  ->  I  e.  W )
pwsplusgval.f  |-  ( ph  ->  F  e.  B )
pwsplusgval.g  |-  ( ph  ->  G  e.  B )
pwsmulrval.a  |-  .x.  =  ( .r `  R )
pwsmulrval.p  |-  .xb  =  ( .r `  Y )
Assertion
Ref Expression
pwsmulrval  |-  ( ph  ->  ( F  .xb  G
)  =  ( F  o F  .x.  G
) )

Proof of Theorem pwsmulrval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2408 . . . 4  |-  ( (Scalar `  R ) X_s ( I  X.  { R } ) )  =  ( (Scalar `  R
) X_s ( I  X.  { R } ) )
2 eqid 2408 . . . 4  |-  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) )  =  ( Base `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) )
3 fvex 5705 . . . . 5  |-  (Scalar `  R )  e.  _V
43a1i 11 . . . 4  |-  ( ph  ->  (Scalar `  R )  e.  _V )
5 pwsplusgval.i . . . 4  |-  ( ph  ->  I  e.  W )
6 pwsplusgval.r . . . . 5  |-  ( ph  ->  R  e.  V )
7 fnconstg 5594 . . . . 5  |-  ( R  e.  V  ->  (
I  X.  { R } )  Fn  I
)
86, 7syl 16 . . . 4  |-  ( ph  ->  ( I  X.  { R } )  Fn  I
)
9 pwsplusgval.f . . . . 5  |-  ( ph  ->  F  e.  B )
10 pwsplusgval.b . . . . . 6  |-  B  =  ( Base `  Y
)
11 pwsplusgval.y . . . . . . . . 9  |-  Y  =  ( R  ^s  I )
12 eqid 2408 . . . . . . . . 9  |-  (Scalar `  R )  =  (Scalar `  R )
1311, 12pwsval 13667 . . . . . . . 8  |-  ( ( R  e.  V  /\  I  e.  W )  ->  Y  =  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )
146, 5, 13syl2anc 643 . . . . . . 7  |-  ( ph  ->  Y  =  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )
1514fveq2d 5695 . . . . . 6  |-  ( ph  ->  ( Base `  Y
)  =  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )
1610, 15syl5eq 2452 . . . . 5  |-  ( ph  ->  B  =  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )
179, 16eleqtrd 2484 . . . 4  |-  ( ph  ->  F  e.  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )
18 pwsplusgval.g . . . . 5  |-  ( ph  ->  G  e.  B )
1918, 16eleqtrd 2484 . . . 4  |-  ( ph  ->  G  e.  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )
20 eqid 2408 . . . 4  |-  ( .r
`  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )  =  ( .r `  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )
211, 2, 4, 5, 8, 17, 19, 20prdsmulrval 13656 . . 3  |-  ( ph  ->  ( F ( .r
`  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) ) G )  =  ( x  e.  I  |->  ( ( F `  x
) ( .r `  ( ( I  X.  { R } ) `  x ) ) ( G `  x ) ) ) )
22 fvconst2g 5908 . . . . . . . 8  |-  ( ( R  e.  V  /\  x  e.  I )  ->  ( ( I  X.  { R } ) `  x )  =  R )
236, 22sylan 458 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  (
( I  X.  { R } ) `  x
)  =  R )
2423fveq2d 5695 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  ( .r `  ( ( I  X.  { R }
) `  x )
)  =  ( .r
`  R ) )
25 pwsmulrval.a . . . . . 6  |-  .x.  =  ( .r `  R )
2624, 25syl6eqr 2458 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  ( .r `  ( ( I  X.  { R }
) `  x )
)  =  .x.  )
2726oveqd 6061 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  (
( F `  x
) ( .r `  ( ( I  X.  { R } ) `  x ) ) ( G `  x ) )  =  ( ( F `  x ) 
.x.  ( G `  x ) ) )
2827mpteq2dva 4259 . . 3  |-  ( ph  ->  ( x  e.  I  |->  ( ( F `  x ) ( .r
`  ( ( I  X.  { R }
) `  x )
) ( G `  x ) ) )  =  ( x  e.  I  |->  ( ( F `
 x )  .x.  ( G `  x ) ) ) )
2921, 28eqtrd 2440 . 2  |-  ( ph  ->  ( F ( .r
`  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) ) G )  =  ( x  e.  I  |->  ( ( F `  x
)  .x.  ( G `  x ) ) ) )
30 pwsmulrval.p . . . 4  |-  .xb  =  ( .r `  Y )
3114fveq2d 5695 . . . 4  |-  ( ph  ->  ( .r `  Y
)  =  ( .r
`  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) ) )
3230, 31syl5eq 2452 . . 3  |-  ( ph  -> 
.xb  =  ( .r
`  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) ) )
3332oveqd 6061 . 2  |-  ( ph  ->  ( F  .xb  G
)  =  ( F ( .r `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) ) G ) )
34 fvex 5705 . . . 4  |-  ( F `
 x )  e. 
_V
3534a1i 11 . . 3  |-  ( (
ph  /\  x  e.  I )  ->  ( F `  x )  e.  _V )
36 fvex 5705 . . . 4  |-  ( G `
 x )  e. 
_V
3736a1i 11 . . 3  |-  ( (
ph  /\  x  e.  I )  ->  ( G `  x )  e.  _V )
38 eqid 2408 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
3911, 38, 10, 6, 5, 9pwselbas 13670 . . . 4  |-  ( ph  ->  F : I --> ( Base `  R ) )
4039feqmptd 5742 . . 3  |-  ( ph  ->  F  =  ( x  e.  I  |->  ( F `
 x ) ) )
4111, 38, 10, 6, 5, 18pwselbas 13670 . . . 4  |-  ( ph  ->  G : I --> ( Base `  R ) )
4241feqmptd 5742 . . 3  |-  ( ph  ->  G  =  ( x  e.  I  |->  ( G `
 x ) ) )
435, 35, 37, 40, 42offval2 6285 . 2  |-  ( ph  ->  ( F  o F 
.x.  G )  =  ( x  e.  I  |->  ( ( F `  x )  .x.  ( G `  x )
) ) )
4429, 33, 433eqtr4d 2450 1  |-  ( ph  ->  ( F  .xb  G
)  =  ( F  o F  .x.  G
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   _Vcvv 2920   {csn 3778    e. cmpt 4230    X. cxp 4839    Fn wfn 5412   ` cfv 5417  (class class class)co 6044    o Fcof 6266   Basecbs 13428   .rcmulr 13489  Scalarcsca 13491   X_scprds 13628    ^s cpws 13629
This theorem is referenced by:  evl1muld  19913  mpfmulcl  19921  mpfind  19922  pf1mulcl  19931  ply1rem  20043  fta1glem2  20046  fta1blem  20048  plypf1  20088
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-cnex 9006  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-pre-mulgt0 9027
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-int 4015  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-of 6268  df-1st 6312  df-2nd 6313  df-riota 6512  df-recs 6596  df-rdg 6631  df-1o 6687  df-oadd 6691  df-er 6868  df-map 6983  df-ixp 7027  df-en 7073  df-dom 7074  df-sdom 7075  df-fin 7076  df-sup 7408  df-pnf 9082  df-mnf 9083  df-xr 9084  df-ltxr 9085  df-le 9086  df-sub 9253  df-neg 9254  df-nn 9961  df-2 10018  df-3 10019  df-4 10020  df-5 10021  df-6 10022  df-7 10023  df-8 10024  df-9 10025  df-10 10026  df-n0 10182  df-z 10243  df-dec 10343  df-uz 10449  df-fz 11004  df-struct 13430  df-ndx 13431  df-slot 13432  df-base 13433  df-plusg 13501  df-mulr 13502  df-sca 13504  df-vsca 13505  df-tset 13507  df-ple 13508  df-ds 13510  df-hom 13512  df-cco 13513  df-prds 13630  df-pws 13632
  Copyright terms: Public domain W3C validator