Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsn Structured version   Unicode version

Theorem pwsn 4009
 Description: The power set of a singleton. (Contributed by NM, 5-Jun-2006.)
Assertion
Ref Expression
pwsn

Proof of Theorem pwsn
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 sssn 3957 . . 3
21abbii 2548 . 2
3 df-pw 3801 . 2
4 dfpr2 3830 . 2
52, 3, 43eqtr4i 2466 1
 Colors of variables: wff set class Syntax hints:   wo 358   wceq 1652  cab 2422   wss 3320  c0 3628  cpw 3799  csn 3814  cpr 3815 This theorem is referenced by:  topsn  17000  concompid  17494  usgra1v  21409  esumsn  24456  cvmlift2lem9  24998 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-pw 3801  df-sn 3820  df-pr 3821
 Copyright terms: Public domain W3C validator