MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwss Unicode version

Theorem pwss 3749
Description: Subclass relationship for power class. (Contributed by NM, 21-Jun-2009.)
Assertion
Ref Expression
pwss  |-  ( ~P A  C_  B  <->  A. x
( x  C_  A  ->  x  e.  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem pwss
StepHypRef Expression
1 dfss2 3273 . 2  |-  ( ~P A  C_  B  <->  A. x
( x  e.  ~P A  ->  x  e.  B
) )
2 df-pw 3737 . . . . 5  |-  ~P A  =  { x  |  x 
C_  A }
32abeq2i 2487 . . . 4  |-  ( x  e.  ~P A  <->  x  C_  A
)
43imbi1i 316 . . 3  |-  ( ( x  e.  ~P A  ->  x  e.  B )  <-> 
( x  C_  A  ->  x  e.  B ) )
54albii 1572 . 2  |-  ( A. x ( x  e. 
~P A  ->  x  e.  B )  <->  A. x
( x  C_  A  ->  x  e.  B ) )
61, 5bitri 241 1  |-  ( ~P A  C_  B  <->  A. x
( x  C_  A  ->  x  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177   A.wal 1546    e. wcel 1717    C_ wss 3256   ~Pcpw 3735
This theorem is referenced by:  axpweq  4310  setind2  7600  axgroth5  8625  grothpw  8627  axgroth6  8629
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361
This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2367  df-cleq 2373  df-clel 2376  df-in 3263  df-ss 3270  df-pw 3737
  Copyright terms: Public domain W3C validator