Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwss Structured version   Unicode version

Theorem pwss 3805
 Description: Subclass relationship for power class. (Contributed by NM, 21-Jun-2009.)
Assertion
Ref Expression
pwss
Distinct variable groups:   ,   ,

Proof of Theorem pwss
StepHypRef Expression
1 dfss2 3329 . 2
2 df-pw 3793 . . . . 5
32abeq2i 2542 . . . 4
43imbi1i 316 . . 3
54albii 1575 . 2
61, 5bitri 241 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177  wal 1549   wcel 1725   wss 3312  cpw 3791 This theorem is referenced by:  axpweq  4368  setind2  7666  axgroth5  8691  grothpw  8693  axgroth6  8695 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-in 3319  df-ss 3326  df-pw 3793
 Copyright terms: Public domain W3C validator