Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwssplit1 Unicode version

Theorem pwssplit1 27188
Description: Splitting for structure powers, part 1: restriction is an onto function. The only actual monoid law we need here is that the base set is nonempty. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
pwssplit1.y  |-  Y  =  ( W  ^s  U )
pwssplit1.z  |-  Z  =  ( W  ^s  V )
pwssplit1.b  |-  B  =  ( Base `  Y
)
pwssplit1.c  |-  C  =  ( Base `  Z
)
pwssplit1.f  |-  F  =  ( x  e.  B  |->  ( x  |`  V ) )
Assertion
Ref Expression
pwssplit1  |-  ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  ->  F : B -onto-> C )
Distinct variable groups:    x, Y    x, W    x, U    x, Z    x, V    x, B    x, C    x, X
Allowed substitution hint:    F( x)

Proof of Theorem pwssplit1
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwssplit1.y . . 3  |-  Y  =  ( W  ^s  U )
2 pwssplit1.z . . 3  |-  Z  =  ( W  ^s  V )
3 pwssplit1.b . . 3  |-  B  =  ( Base `  Y
)
4 pwssplit1.c . . 3  |-  C  =  ( Base `  Z
)
5 pwssplit1.f . . 3  |-  F  =  ( x  e.  B  |->  ( x  |`  V ) )
61, 2, 3, 4, 5pwssplit0 27187 . 2  |-  ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  ->  F : B --> C )
7 simp1 955 . . . . . . . . 9  |-  ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  ->  W  e.  Mnd )
8 simp3 957 . . . . . . . . . 10  |-  ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  ->  V  C_  U )
9 simp2 956 . . . . . . . . . 10  |-  ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  ->  U  e.  X )
10 ssexg 4160 . . . . . . . . . 10  |-  ( ( V  C_  U  /\  U  e.  X )  ->  V  e.  _V )
118, 9, 10syl2anc 642 . . . . . . . . 9  |-  ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  ->  V  e.  _V )
12 eqid 2283 . . . . . . . . . 10  |-  ( Base `  W )  =  (
Base `  W )
132, 12, 4pwselbasb 13387 . . . . . . . . 9  |-  ( ( W  e.  Mnd  /\  V  e.  _V )  ->  ( a  e.  C  <->  a : V --> ( Base `  W ) ) )
147, 11, 13syl2anc 642 . . . . . . . 8  |-  ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  -> 
( a  e.  C  <->  a : V --> ( Base `  W ) ) )
1514biimpa 470 . . . . . . 7  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  a : V --> ( Base `  W ) )
16 fvex 5539 . . . . . . . . . 10  |-  ( 0g
`  W )  e. 
_V
1716fconst 5427 . . . . . . . . 9  |-  ( ( U  \  V )  X.  { ( 0g
`  W ) } ) : ( U 
\  V ) --> { ( 0g `  W
) }
1817a1i 10 . . . . . . . 8  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  ( ( U  \  V )  X.  {
( 0g `  W
) } ) : ( U  \  V
) --> { ( 0g
`  W ) } )
19 simpl1 958 . . . . . . . . . 10  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  W  e.  Mnd )
20 eqid 2283 . . . . . . . . . . 11  |-  ( 0g
`  W )  =  ( 0g `  W
)
2112, 20mndidcl 14391 . . . . . . . . . 10  |-  ( W  e.  Mnd  ->  ( 0g `  W )  e.  ( Base `  W
) )
2219, 21syl 15 . . . . . . . . 9  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  ( 0g `  W
)  e.  ( Base `  W ) )
2322snssd 3760 . . . . . . . 8  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  { ( 0g `  W ) }  C_  ( Base `  W )
)
24 fss 5397 . . . . . . . 8  |-  ( ( ( ( U  \  V )  X.  {
( 0g `  W
) } ) : ( U  \  V
) --> { ( 0g
`  W ) }  /\  { ( 0g
`  W ) } 
C_  ( Base `  W
) )  ->  (
( U  \  V
)  X.  { ( 0g `  W ) } ) : ( U  \  V ) --> ( Base `  W
) )
2518, 23, 24syl2anc 642 . . . . . . 7  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  ( ( U  \  V )  X.  {
( 0g `  W
) } ) : ( U  \  V
) --> ( Base `  W
) )
26 disjdif 3526 . . . . . . . 8  |-  ( V  i^i  ( U  \  V ) )  =  (/)
2726a1i 10 . . . . . . 7  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  ( V  i^i  ( U  \  V ) )  =  (/) )
28 fun 5405 . . . . . . 7  |-  ( ( ( a : V --> ( Base `  W )  /\  ( ( U  \  V )  X.  {
( 0g `  W
) } ) : ( U  \  V
) --> ( Base `  W
) )  /\  ( V  i^i  ( U  \  V ) )  =  (/) )  ->  ( a  u.  ( ( U 
\  V )  X. 
{ ( 0g `  W ) } ) ) : ( V  u.  ( U  \  V ) ) --> ( ( Base `  W
)  u.  ( Base `  W ) ) )
2915, 25, 27, 28syl21anc 1181 . . . . . 6  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  ( a  u.  (
( U  \  V
)  X.  { ( 0g `  W ) } ) ) : ( V  u.  ( U  \  V ) ) --> ( ( Base `  W
)  u.  ( Base `  W ) ) )
30 simpl3 960 . . . . . . . 8  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  V  C_  U )
31 undif 3534 . . . . . . . 8  |-  ( V 
C_  U  <->  ( V  u.  ( U  \  V
) )  =  U )
3230, 31sylib 188 . . . . . . 7  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  ( V  u.  ( U  \  V ) )  =  U )
33 unidm 3318 . . . . . . . 8  |-  ( (
Base `  W )  u.  ( Base `  W
) )  =  (
Base `  W )
3433a1i 10 . . . . . . 7  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  ( ( Base `  W
)  u.  ( Base `  W ) )  =  ( Base `  W
) )
3532, 34feq23d 5386 . . . . . 6  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  ( ( a  u.  ( ( U  \  V )  X.  {
( 0g `  W
) } ) ) : ( V  u.  ( U  \  V ) ) --> ( ( Base `  W )  u.  ( Base `  W ) )  <-> 
( a  u.  (
( U  \  V
)  X.  { ( 0g `  W ) } ) ) : U --> ( Base `  W
) ) )
3629, 35mpbid 201 . . . . 5  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  ( a  u.  (
( U  \  V
)  X.  { ( 0g `  W ) } ) ) : U --> ( Base `  W
) )
37 simpl2 959 . . . . . 6  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  U  e.  X )
381, 12, 3pwselbasb 13387 . . . . . 6  |-  ( ( W  e.  Mnd  /\  U  e.  X )  ->  ( ( a  u.  ( ( U  \  V )  X.  {
( 0g `  W
) } ) )  e.  B  <->  ( a  u.  ( ( U  \  V )  X.  {
( 0g `  W
) } ) ) : U --> ( Base `  W ) ) )
3919, 37, 38syl2anc 642 . . . . 5  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  ( ( a  u.  ( ( U  \  V )  X.  {
( 0g `  W
) } ) )  e.  B  <->  ( a  u.  ( ( U  \  V )  X.  {
( 0g `  W
) } ) ) : U --> ( Base `  W ) ) )
4036, 39mpbird 223 . . . 4  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  ( a  u.  (
( U  \  V
)  X.  { ( 0g `  W ) } ) )  e.  B )
415fvtresfn 26763 . . . . . 6  |-  ( ( a  u.  ( ( U  \  V )  X.  { ( 0g
`  W ) } ) )  e.  B  ->  ( F `  (
a  u.  ( ( U  \  V )  X.  { ( 0g
`  W ) } ) ) )  =  ( ( a  u.  ( ( U  \  V )  X.  {
( 0g `  W
) } ) )  |`  V ) )
4240, 41syl 15 . . . . 5  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  ( F `  (
a  u.  ( ( U  \  V )  X.  { ( 0g
`  W ) } ) ) )  =  ( ( a  u.  ( ( U  \  V )  X.  {
( 0g `  W
) } ) )  |`  V ) )
43 resundir 4970 . . . . . . 7  |-  ( ( a  u.  ( ( U  \  V )  X.  { ( 0g
`  W ) } ) )  |`  V )  =  ( ( a  |`  V )  u.  (
( ( U  \  V )  X.  {
( 0g `  W
) } )  |`  V ) )
44 ffn 5389 . . . . . . . . 9  |-  ( a : V --> ( Base `  W )  ->  a  Fn  V )
45 fnresdm 5353 . . . . . . . . 9  |-  ( a  Fn  V  ->  (
a  |`  V )  =  a )
4615, 44, 453syl 18 . . . . . . . 8  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  ( a  |`  V )  =  a )
47 incom 3361 . . . . . . . . . 10  |-  ( ( U  \  V )  i^i  V )  =  ( V  i^i  ( U  \  V ) )
4847, 26eqtri 2303 . . . . . . . . 9  |-  ( ( U  \  V )  i^i  V )  =  (/)
49 fnconstg 5429 . . . . . . . . . . 11  |-  ( ( 0g `  W )  e.  _V  ->  (
( U  \  V
)  X.  { ( 0g `  W ) } )  Fn  ( U  \  V ) )
5016, 49ax-mp 8 . . . . . . . . . 10  |-  ( ( U  \  V )  X.  { ( 0g
`  W ) } )  Fn  ( U 
\  V )
51 fnresdisj 5354 . . . . . . . . . 10  |-  ( ( ( U  \  V
)  X.  { ( 0g `  W ) } )  Fn  ( U  \  V )  -> 
( ( ( U 
\  V )  i^i 
V )  =  (/)  <->  (
( ( U  \  V )  X.  {
( 0g `  W
) } )  |`  V )  =  (/) ) )
5250, 51mp1i 11 . . . . . . . . 9  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  ( ( ( U 
\  V )  i^i 
V )  =  (/)  <->  (
( ( U  \  V )  X.  {
( 0g `  W
) } )  |`  V )  =  (/) ) )
5348, 52mpbii 202 . . . . . . . 8  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  ( ( ( U 
\  V )  X. 
{ ( 0g `  W ) } )  |`  V )  =  (/) )
5446, 53uneq12d 3330 . . . . . . 7  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  ( ( a  |`  V )  u.  (
( ( U  \  V )  X.  {
( 0g `  W
) } )  |`  V ) )  =  ( a  u.  (/) ) )
5543, 54syl5eq 2327 . . . . . 6  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  ( ( a  u.  ( ( U  \  V )  X.  {
( 0g `  W
) } ) )  |`  V )  =  ( a  u.  (/) ) )
56 un0 3479 . . . . . 6  |-  ( a  u.  (/) )  =  a
5755, 56syl6eq 2331 . . . . 5  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  ( ( a  u.  ( ( U  \  V )  X.  {
( 0g `  W
) } ) )  |`  V )  =  a )
5842, 57eqtr2d 2316 . . . 4  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  a  =  ( F `
 ( a  u.  ( ( U  \  V )  X.  {
( 0g `  W
) } ) ) ) )
59 fveq2 5525 . . . . . 6  |-  ( b  =  ( a  u.  ( ( U  \  V )  X.  {
( 0g `  W
) } ) )  ->  ( F `  b )  =  ( F `  ( a  u.  ( ( U 
\  V )  X. 
{ ( 0g `  W ) } ) ) ) )
6059eqeq2d 2294 . . . . 5  |-  ( b  =  ( a  u.  ( ( U  \  V )  X.  {
( 0g `  W
) } ) )  ->  ( a  =  ( F `  b
)  <->  a  =  ( F `  ( a  u.  ( ( U 
\  V )  X. 
{ ( 0g `  W ) } ) ) ) ) )
6160rspcev 2884 . . . 4  |-  ( ( ( a  u.  (
( U  \  V
)  X.  { ( 0g `  W ) } ) )  e.  B  /\  a  =  ( F `  (
a  u.  ( ( U  \  V )  X.  { ( 0g
`  W ) } ) ) ) )  ->  E. b  e.  B  a  =  ( F `  b ) )
6240, 58, 61syl2anc 642 . . 3  |-  ( ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  C )  ->  E. b  e.  B  a  =  ( F `  b ) )
6362ralrimiva 2626 . 2  |-  ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  ->  A. a  e.  C  E. b  e.  B  a  =  ( F `  b ) )
64 dffo3 5675 . 2  |-  ( F : B -onto-> C  <->  ( F : B --> C  /\  A. a  e.  C  E. b  e.  B  a  =  ( F `  b ) ) )
656, 63, 64sylanbrc 645 1  |-  ( ( W  e.  Mnd  /\  U  e.  X  /\  V  C_  U )  ->  F : B -onto-> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   _Vcvv 2788    \ cdif 3149    u. cun 3150    i^i cin 3151    C_ wss 3152   (/)c0 3455   {csn 3640    e. cmpt 4077    X. cxp 4687    |` cres 4691    Fn wfn 5250   -->wf 5251   -onto->wfo 5253   ` cfv 5255  (class class class)co 5858   Basecbs 13148    ^s cpws 13347   0gc0g 13400   Mndcmnd 14361
This theorem is referenced by:  pwslnmlem2  27195
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-fz 10783  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-plusg 13221  df-mulr 13222  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-prds 13348  df-pws 13350  df-0g 13404  df-mnd 14367
  Copyright terms: Public domain W3C validator