Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwssplit4 Unicode version

Theorem pwssplit4 27294
Description: Splitting for structure powers 4: maps isomorphically onto the other half. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Hypotheses
Ref Expression
pwssplit4.e  |-  E  =  ( R  ^s  ( A  u.  B ) )
pwssplit4.g  |-  G  =  ( Base `  E
)
pwssplit4.z  |-  .0.  =  ( 0g `  R )
pwssplit4.k  |-  K  =  { y  e.  G  |  ( y  |`  A )  =  ( A  X.  {  .0.  } ) }
pwssplit4.f  |-  F  =  ( x  e.  K  |->  ( x  |`  B ) )
pwssplit4.c  |-  C  =  ( R  ^s  A )
pwssplit4.d  |-  D  =  ( R  ^s  B )
pwssplit4.l  |-  L  =  ( Es  K )
Assertion
Ref Expression
pwssplit4  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  F  e.  ( L LMIso  D ) )
Distinct variable groups:    x, A, y    x, B, y    x, C, y    x, D, y   
x, E, y    x, G, y    x, K    x, L    x, R, y    x, V, y    x,  .0. , y
Allowed substitution hints:    F( x, y)    K( y)    L( y)

Proof of Theorem pwssplit4
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 pwssplit4.f . . . 4  |-  F  =  ( x  e.  K  |->  ( x  |`  B ) )
2 pwssplit4.k . . . . . 6  |-  K  =  { y  e.  G  |  ( y  |`  A )  =  ( A  X.  {  .0.  } ) }
3 ssrab2 3271 . . . . . 6  |-  { y  e.  G  |  ( y  |`  A )  =  ( A  X.  {  .0.  } ) } 
C_  G
42, 3eqsstri 3221 . . . . 5  |-  K  C_  G
5 resmpt 5016 . . . . 5  |-  ( K 
C_  G  ->  (
( x  e.  G  |->  ( x  |`  B ) )  |`  K )  =  ( x  e.  K  |->  ( x  |`  B ) ) )
64, 5ax-mp 8 . . . 4  |-  ( ( x  e.  G  |->  ( x  |`  B )
)  |`  K )  =  ( x  e.  K  |->  ( x  |`  B ) )
71, 6eqtr4i 2319 . . 3  |-  F  =  ( ( x  e.  G  |->  ( x  |`  B ) )  |`  K )
8 ssun2 3352 . . . . . 6  |-  B  C_  ( A  u.  B
)
98a1i 10 . . . . 5  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  B  C_  ( A  u.  B
) )
10 pwssplit4.e . . . . . 6  |-  E  =  ( R  ^s  ( A  u.  B ) )
11 pwssplit4.d . . . . . 6  |-  D  =  ( R  ^s  B )
12 pwssplit4.g . . . . . 6  |-  G  =  ( Base `  E
)
13 eqid 2296 . . . . . 6  |-  ( Base `  D )  =  (
Base `  D )
14 eqid 2296 . . . . . 6  |-  ( x  e.  G  |->  ( x  |`  B ) )  =  ( x  e.  G  |->  ( x  |`  B ) )
1510, 11, 12, 13, 14pwssplit3 27293 . . . . 5  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  B  C_  ( A  u.  B
) )  ->  (
x  e.  G  |->  ( x  |`  B )
)  e.  ( E LMHom 
D ) )
169, 15syld3an3 1227 . . . 4  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( x  e.  G  |->  ( x  |`  B ) )  e.  ( E LMHom  D ) )
17 simp1 955 . . . . . . . . . 10  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  R  e. 
LMod )
18 lmodgrp 15650 . . . . . . . . . 10  |-  ( R  e.  LMod  ->  R  e. 
Grp )
19 grpmnd 14510 . . . . . . . . . 10  |-  ( R  e.  Grp  ->  R  e.  Mnd )
2017, 18, 193syl 18 . . . . . . . . 9  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  R  e. 
Mnd )
21 ssun1 3351 . . . . . . . . . . 11  |-  A  C_  ( A  u.  B
)
22 ssexg 4176 . . . . . . . . . . 11  |-  ( ( A  C_  ( A  u.  B )  /\  ( A  u.  B )  e.  V )  ->  A  e.  _V )
2321, 22mpan 651 . . . . . . . . . 10  |-  ( ( A  u.  B )  e.  V  ->  A  e.  _V )
24233ad2ant2 977 . . . . . . . . 9  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  A  e. 
_V )
25 pwssplit4.c . . . . . . . . . 10  |-  C  =  ( R  ^s  A )
26 pwssplit4.z . . . . . . . . . 10  |-  .0.  =  ( 0g `  R )
2725, 26pws0g 14424 . . . . . . . . 9  |-  ( ( R  e.  Mnd  /\  A  e.  _V )  ->  ( A  X.  {  .0.  } )  =  ( 0g `  C ) )
2820, 24, 27syl2anc 642 . . . . . . . 8  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( A  X.  {  .0.  }
)  =  ( 0g
`  C ) )
2928eqeq2d 2307 . . . . . . 7  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( ( y  |`  A )  =  ( A  X.  {  .0.  } )  <->  ( y  |`  A )  =  ( 0g `  C ) ) )
3029rabbidv 2793 . . . . . 6  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  { y  e.  G  |  ( y  |`  A )  =  ( A  X.  {  .0.  } ) }  =  { y  e.  G  |  ( y  |`  A )  =  ( 0g `  C ) } )
312, 30syl5eq 2340 . . . . 5  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  K  =  { y  e.  G  |  ( y  |`  A )  =  ( 0g `  C ) } )
3221a1i 10 . . . . . . 7  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  A  C_  ( A  u.  B
) )
33 eqid 2296 . . . . . . . 8  |-  ( Base `  C )  =  (
Base `  C )
34 eqid 2296 . . . . . . . 8  |-  ( y  e.  G  |->  ( y  |`  A ) )  =  ( y  e.  G  |->  ( y  |`  A ) )
3510, 25, 12, 33, 34pwssplit3 27293 . . . . . . 7  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  A  C_  ( A  u.  B
) )  ->  (
y  e.  G  |->  ( y  |`  A )
)  e.  ( E LMHom 
C ) )
3632, 35syld3an3 1227 . . . . . 6  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( y  e.  G  |->  ( y  |`  A ) )  e.  ( E LMHom  C ) )
37 fvex 5555 . . . . . . . . 9  |-  ( 0g
`  C )  e. 
_V
3834mptiniseg 5183 . . . . . . . . 9  |-  ( ( 0g `  C )  e.  _V  ->  ( `' ( y  e.  G  |->  ( y  |`  A ) ) " { ( 0g `  C ) } )  =  { y  e.  G  |  ( y  |`  A )  =  ( 0g `  C ) } )
3937, 38ax-mp 8 . . . . . . . 8  |-  ( `' ( y  e.  G  |->  ( y  |`  A ) ) " { ( 0g `  C ) } )  =  {
y  e.  G  | 
( y  |`  A )  =  ( 0g `  C ) }
4039eqcomi 2300 . . . . . . 7  |-  { y  e.  G  |  ( y  |`  A )  =  ( 0g `  C ) }  =  ( `' ( y  e.  G  |->  ( y  |`  A ) ) " { ( 0g `  C ) } )
41 eqid 2296 . . . . . . 7  |-  ( 0g
`  C )  =  ( 0g `  C
)
42 eqid 2296 . . . . . . 7  |-  ( LSubSp `  E )  =  (
LSubSp `  E )
4340, 41, 42lmhmkerlss 15824 . . . . . 6  |-  ( ( y  e.  G  |->  ( y  |`  A )
)  e.  ( E LMHom 
C )  ->  { y  e.  G  |  ( y  |`  A )  =  ( 0g `  C ) }  e.  ( LSubSp `  E )
)
4436, 43syl 15 . . . . 5  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  { y  e.  G  |  ( y  |`  A )  =  ( 0g `  C ) }  e.  ( LSubSp `  E )
)
4531, 44eqeltrd 2370 . . . 4  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  K  e.  ( LSubSp `  E )
)
46 pwssplit4.l . . . . 5  |-  L  =  ( Es  K )
4742, 46reslmhm 15825 . . . 4  |-  ( ( ( x  e.  G  |->  ( x  |`  B ) )  e.  ( E LMHom 
D )  /\  K  e.  ( LSubSp `  E )
)  ->  ( (
x  e.  G  |->  ( x  |`  B )
)  |`  K )  e.  ( L LMHom  D ) )
4816, 45, 47syl2anc 642 . . 3  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( ( x  e.  G  |->  ( x  |`  B )
)  |`  K )  e.  ( L LMHom  D ) )
497, 48syl5eqel 2380 . 2  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  F  e.  ( L LMHom  D ) )
501fvtresfn 26866 . . . . . . 7  |-  ( a  e.  K  ->  ( F `  a )  =  ( a  |`  B ) )
51 ssexg 4176 . . . . . . . . . . 11  |-  ( ( B  C_  ( A  u.  B )  /\  ( A  u.  B )  e.  V )  ->  B  e.  _V )
528, 51mpan 651 . . . . . . . . . 10  |-  ( ( A  u.  B )  e.  V  ->  B  e.  _V )
53523ad2ant2 977 . . . . . . . . 9  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  B  e. 
_V )
5411, 26pws0g 14424 . . . . . . . . 9  |-  ( ( R  e.  Mnd  /\  B  e.  _V )  ->  ( B  X.  {  .0.  } )  =  ( 0g `  D ) )
5520, 53, 54syl2anc 642 . . . . . . . 8  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( B  X.  {  .0.  }
)  =  ( 0g
`  D ) )
5655eqcomd 2301 . . . . . . 7  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( 0g
`  D )  =  ( B  X.  {  .0.  } ) )
5750, 56eqeqan12rd 2312 . . . . . 6  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  K )  ->  (
( F `  a
)  =  ( 0g
`  D )  <->  ( a  |`  B )  =  ( B  X.  {  .0.  } ) ) )
58 reseq1 4965 . . . . . . . . . 10  |-  ( y  =  a  ->  (
y  |`  A )  =  ( a  |`  A ) )
5958eqeq1d 2304 . . . . . . . . 9  |-  ( y  =  a  ->  (
( y  |`  A )  =  ( A  X.  {  .0.  } )  <->  ( a  |`  A )  =  ( A  X.  {  .0.  } ) ) )
6059, 2elrab2 2938 . . . . . . . 8  |-  ( a  e.  K  <->  ( a  e.  G  /\  (
a  |`  A )  =  ( A  X.  {  .0.  } ) ) )
61 uneq12 3337 . . . . . . . . . . . . 13  |-  ( ( ( a  |`  A )  =  ( A  X.  {  .0.  } )  /\  ( a  |`  B )  =  ( B  X.  {  .0.  } ) )  ->  ( ( a  |`  A )  u.  (
a  |`  B ) )  =  ( ( A  X.  {  .0.  }
)  u.  ( B  X.  {  .0.  }
) ) )
62 resundi 4985 . . . . . . . . . . . . 13  |-  ( a  |`  ( A  u.  B
) )  =  ( ( a  |`  A )  u.  ( a  |`  B ) )
63 xpundir 4758 . . . . . . . . . . . . 13  |-  ( ( A  u.  B )  X.  {  .0.  }
)  =  ( ( A  X.  {  .0.  } )  u.  ( B  X.  {  .0.  }
) )
6461, 62, 633eqtr4g 2353 . . . . . . . . . . . 12  |-  ( ( ( a  |`  A )  =  ( A  X.  {  .0.  } )  /\  ( a  |`  B )  =  ( B  X.  {  .0.  } ) )  ->  ( a  |`  ( A  u.  B
) )  =  ( ( A  u.  B
)  X.  {  .0.  } ) )
6564adantll 694 . . . . . . . . . . 11  |-  ( ( ( a  e.  G  /\  ( a  |`  A )  =  ( A  X.  {  .0.  } ) )  /\  ( a  |`  B )  =  ( B  X.  {  .0.  } ) )  ->  (
a  |`  ( A  u.  B ) )  =  ( ( A  u.  B )  X.  {  .0.  } ) )
6665adantl 452 . . . . . . . . . 10  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  (
( a  e.  G  /\  ( a  |`  A )  =  ( A  X.  {  .0.  } ) )  /\  ( a  |`  B )  =  ( B  X.  {  .0.  } ) ) )  -> 
( a  |`  ( A  u.  B )
)  =  ( ( A  u.  B )  X.  {  .0.  }
) )
67 eqid 2296 . . . . . . . . . . . 12  |-  ( Base `  R )  =  (
Base `  R )
68 simpl1 958 . . . . . . . . . . . 12  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  (
( a  e.  G  /\  ( a  |`  A )  =  ( A  X.  {  .0.  } ) )  /\  ( a  |`  B )  =  ( B  X.  {  .0.  } ) ) )  ->  R  e.  LMod )
69 simp2 956 . . . . . . . . . . . . 13  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( A  u.  B )  e.  V )
7069adantr 451 . . . . . . . . . . . 12  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  (
( a  e.  G  /\  ( a  |`  A )  =  ( A  X.  {  .0.  } ) )  /\  ( a  |`  B )  =  ( B  X.  {  .0.  } ) ) )  -> 
( A  u.  B
)  e.  V )
71 simprll 738 . . . . . . . . . . . 12  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  (
( a  e.  G  /\  ( a  |`  A )  =  ( A  X.  {  .0.  } ) )  /\  ( a  |`  B )  =  ( B  X.  {  .0.  } ) ) )  -> 
a  e.  G )
7210, 67, 12, 68, 70, 71pwselbas 13404 . . . . . . . . . . 11  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  (
( a  e.  G  /\  ( a  |`  A )  =  ( A  X.  {  .0.  } ) )  /\  ( a  |`  B )  =  ( B  X.  {  .0.  } ) ) )  -> 
a : ( A  u.  B ) --> (
Base `  R )
)
73 ffn 5405 . . . . . . . . . . 11  |-  ( a : ( A  u.  B ) --> ( Base `  R )  ->  a  Fn  ( A  u.  B
) )
74 fnresdm 5369 . . . . . . . . . . 11  |-  ( a  Fn  ( A  u.  B )  ->  (
a  |`  ( A  u.  B ) )  =  a )
7572, 73, 743syl 18 . . . . . . . . . 10  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  (
( a  e.  G  /\  ( a  |`  A )  =  ( A  X.  {  .0.  } ) )  /\  ( a  |`  B )  =  ( B  X.  {  .0.  } ) ) )  -> 
( a  |`  ( A  u.  B )
)  =  a )
7610, 26pws0g 14424 . . . . . . . . . . . . 13  |-  ( ( R  e.  Mnd  /\  ( A  u.  B
)  e.  V )  ->  ( ( A  u.  B )  X. 
{  .0.  } )  =  ( 0g `  E ) )
7720, 69, 76syl2anc 642 . . . . . . . . . . . 12  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( ( A  u.  B )  X.  {  .0.  }
)  =  ( 0g
`  E ) )
7810pwslmod 15743 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V )  ->  E  e.  LMod )
79783adant3 975 . . . . . . . . . . . . . 14  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  E  e. 
LMod )
8042lsssubg 15730 . . . . . . . . . . . . . 14  |-  ( ( E  e.  LMod  /\  K  e.  ( LSubSp `  E )
)  ->  K  e.  (SubGrp `  E ) )
8179, 45, 80syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  K  e.  (SubGrp `  E )
)
82 eqid 2296 . . . . . . . . . . . . . 14  |-  ( 0g
`  E )  =  ( 0g `  E
)
8346, 82subg0 14643 . . . . . . . . . . . . 13  |-  ( K  e.  (SubGrp `  E
)  ->  ( 0g `  E )  =  ( 0g `  L ) )
8481, 83syl 15 . . . . . . . . . . . 12  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( 0g
`  E )  =  ( 0g `  L
) )
8577, 84eqtrd 2328 . . . . . . . . . . 11  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( ( A  u.  B )  X.  {  .0.  }
)  =  ( 0g
`  L ) )
8685adantr 451 . . . . . . . . . 10  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  (
( a  e.  G  /\  ( a  |`  A )  =  ( A  X.  {  .0.  } ) )  /\  ( a  |`  B )  =  ( B  X.  {  .0.  } ) ) )  -> 
( ( A  u.  B )  X.  {  .0.  } )  =  ( 0g `  L ) )
8766, 75, 863eqtr3d 2336 . . . . . . . . 9  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  (
( a  e.  G  /\  ( a  |`  A )  =  ( A  X.  {  .0.  } ) )  /\  ( a  |`  B )  =  ( B  X.  {  .0.  } ) ) )  -> 
a  =  ( 0g
`  L ) )
8887exp32 588 . . . . . . . 8  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( ( a  e.  G  /\  ( a  |`  A )  =  ( A  X.  {  .0.  } ) )  ->  ( ( a  |`  B )  =  ( B  X.  {  .0.  } )  ->  a  =  ( 0g `  L ) ) ) )
8960, 88syl5bi 208 . . . . . . 7  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( a  e.  K  ->  (
( a  |`  B )  =  ( B  X.  {  .0.  } )  -> 
a  =  ( 0g
`  L ) ) ) )
9089imp 418 . . . . . 6  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  K )  ->  (
( a  |`  B )  =  ( B  X.  {  .0.  } )  -> 
a  =  ( 0g
`  L ) ) )
9157, 90sylbid 206 . . . . 5  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  K )  ->  (
( F `  a
)  =  ( 0g
`  D )  -> 
a  =  ( 0g
`  L ) ) )
9291ralrimiva 2639 . . . 4  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  A. a  e.  K  ( ( F `  a )  =  ( 0g `  D )  ->  a  =  ( 0g `  L ) ) )
93 lmghm 15804 . . . . 5  |-  ( F  e.  ( L LMHom  D
)  ->  F  e.  ( L  GrpHom  D ) )
9446, 12ressbas2 13215 . . . . . . 7  |-  ( K 
C_  G  ->  K  =  ( Base `  L
) )
954, 94ax-mp 8 . . . . . 6  |-  K  =  ( Base `  L
)
96 eqid 2296 . . . . . 6  |-  ( 0g
`  L )  =  ( 0g `  L
)
97 eqid 2296 . . . . . 6  |-  ( 0g
`  D )  =  ( 0g `  D
)
9895, 13, 96, 97ghmf1 14727 . . . . 5  |-  ( F  e.  ( L  GrpHom  D )  ->  ( F : K -1-1-> ( Base `  D
)  <->  A. a  e.  K  ( ( F `  a )  =  ( 0g `  D )  ->  a  =  ( 0g `  L ) ) ) )
9949, 93, 983syl 18 . . . 4  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( F : K -1-1-> ( Base `  D )  <->  A. a  e.  K  ( ( F `  a )  =  ( 0g `  D )  ->  a  =  ( 0g `  L ) ) ) )
10092, 99mpbird 223 . . 3  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  F : K -1-1-> ( Base `  D
) )
101 eqid 2296 . . . . . 6  |-  ( Base `  L )  =  (
Base `  L )
102101, 13lmhmf 15807 . . . . 5  |-  ( F  e.  ( L LMHom  D
)  ->  F :
( Base `  L ) --> ( Base `  D )
)
103 frn 5411 . . . . 5  |-  ( F : ( Base `  L
) --> ( Base `  D
)  ->  ran  F  C_  ( Base `  D )
)
10449, 102, 1033syl 18 . . . 4  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ran  F  C_  ( Base `  D
) )
10511, 67, 13pwselbasb 13403 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  LMod  /\  B  e.  _V )  ->  (
a  e.  ( Base `  D )  <->  a : B
--> ( Base `  R
) ) )
10617, 53, 105syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( a  e.  ( Base `  D
)  <->  a : B --> ( Base `  R )
) )
107106biimpa 470 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  a : B --> ( Base `  R
) )
108 fvex 5555 . . . . . . . . . . . . . . . . 17  |-  ( 0g
`  R )  e. 
_V
10926, 108eqeltri 2366 . . . . . . . . . . . . . . . 16  |-  .0.  e.  _V
110109fconst 5443 . . . . . . . . . . . . . . 15  |-  ( A  X.  {  .0.  }
) : A --> {  .0.  }
111110a1i 10 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  ( A  X.  {  .0.  }
) : A --> {  .0.  } )
11220adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  R  e.  Mnd )
11367, 26mndidcl 14407 . . . . . . . . . . . . . . . 16  |-  ( R  e.  Mnd  ->  .0.  e.  ( Base `  R
) )
114112, 113syl 15 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  .0.  e.  ( Base `  R
) )
115114snssd 3776 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  {  .0.  } 
C_  ( Base `  R
) )
116 fss 5413 . . . . . . . . . . . . . 14  |-  ( ( ( A  X.  {  .0.  } ) : A --> {  .0.  }  /\  {  .0.  }  C_  ( Base `  R ) )  -> 
( A  X.  {  .0.  } ) : A --> ( Base `  R )
)
117111, 115, 116syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  ( A  X.  {  .0.  }
) : A --> ( Base `  R ) )
118 incom 3374 . . . . . . . . . . . . . . 15  |-  ( B  i^i  A )  =  ( A  i^i  B
)
119 simp3 957 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( A  i^i  B )  =  (/) )
120118, 119syl5eq 2340 . . . . . . . . . . . . . 14  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( B  i^i  A )  =  (/) )
121120adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  ( B  i^i  A )  =  (/) )
122 fun 5421 . . . . . . . . . . . . 13  |-  ( ( ( a : B --> ( Base `  R )  /\  ( A  X.  {  .0.  } ) : A --> ( Base `  R )
)  /\  ( B  i^i  A )  =  (/) )  ->  ( a  u.  ( A  X.  {  .0.  } ) ) : ( B  u.  A
) --> ( ( Base `  R )  u.  ( Base `  R ) ) )
123107, 117, 121, 122syl21anc 1181 . . . . . . . . . . . 12  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
a  u.  ( A  X.  {  .0.  }
) ) : ( B  u.  A ) --> ( ( Base `  R
)  u.  ( Base `  R ) ) )
124 uncom 3332 . . . . . . . . . . . . 13  |-  ( B  u.  A )  =  ( A  u.  B
)
125 unidm 3331 . . . . . . . . . . . . 13  |-  ( (
Base `  R )  u.  ( Base `  R
) )  =  (
Base `  R )
126124, 125feq23i 5401 . . . . . . . . . . . 12  |-  ( ( a  u.  ( A  X.  {  .0.  }
) ) : ( B  u.  A ) --> ( ( Base `  R
)  u.  ( Base `  R ) )  <->  ( a  u.  ( A  X.  {  .0.  } ) ) : ( A  u.  B
) --> ( Base `  R
) )
127123, 126sylib 188 . . . . . . . . . . 11  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
a  u.  ( A  X.  {  .0.  }
) ) : ( A  u.  B ) --> ( Base `  R
) )
12810, 67, 12pwselbasb 13403 . . . . . . . . . . . . 13  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V )  ->  (
( a  u.  ( A  X.  {  .0.  }
) )  e.  G  <->  ( a  u.  ( A  X.  {  .0.  }
) ) : ( A  u.  B ) --> ( Base `  R
) ) )
1291283adant3 975 . . . . . . . . . . . 12  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( ( a  u.  ( A  X.  {  .0.  }
) )  e.  G  <->  ( a  u.  ( A  X.  {  .0.  }
) ) : ( A  u.  B ) --> ( Base `  R
) ) )
130129adantr 451 . . . . . . . . . . 11  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
( a  u.  ( A  X.  {  .0.  }
) )  e.  G  <->  ( a  u.  ( A  X.  {  .0.  }
) ) : ( A  u.  B ) --> ( Base `  R
) ) )
131127, 130mpbird 223 . . . . . . . . . 10  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
a  u.  ( A  X.  {  .0.  }
) )  e.  G
)
132 simpl3 960 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  ( A  i^i  B )  =  (/) )
133118, 132syl5eq 2340 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  ( B  i^i  A )  =  (/) )
134 ffn 5405 . . . . . . . . . . . . . 14  |-  ( a : B --> ( Base `  R )  ->  a  Fn  B )
135 fnresdisj 5370 . . . . . . . . . . . . . 14  |-  ( a  Fn  B  ->  (
( B  i^i  A
)  =  (/)  <->  ( a  |`  A )  =  (/) ) )
136107, 134, 1353syl 18 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
( B  i^i  A
)  =  (/)  <->  ( a  |`  A )  =  (/) ) )
137133, 136mpbid 201 . . . . . . . . . . . 12  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
a  |`  A )  =  (/) )
138 fnconstg 5445 . . . . . . . . . . . . . 14  |-  (  .0. 
e.  _V  ->  ( A  X.  {  .0.  }
)  Fn  A )
139 fnresdm 5369 . . . . . . . . . . . . . 14  |-  ( ( A  X.  {  .0.  } )  Fn  A  -> 
( ( A  X.  {  .0.  } )  |`  A )  =  ( A  X.  {  .0.  } ) )
140109, 138, 139mp2b 9 . . . . . . . . . . . . 13  |-  ( ( A  X.  {  .0.  } )  |`  A )  =  ( A  X.  {  .0.  } )
141140a1i 10 . . . . . . . . . . . 12  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
( A  X.  {  .0.  } )  |`  A )  =  ( A  X.  {  .0.  } ) )
142137, 141uneq12d 3343 . . . . . . . . . . 11  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
( a  |`  A )  u.  ( ( A  X.  {  .0.  }
)  |`  A ) )  =  ( (/)  u.  ( A  X.  {  .0.  }
) ) )
143 resundir 4986 . . . . . . . . . . 11  |-  ( ( a  u.  ( A  X.  {  .0.  }
) )  |`  A )  =  ( ( a  |`  A )  u.  (
( A  X.  {  .0.  } )  |`  A ) )
144 uncom 3332 . . . . . . . . . . . 12  |-  ( (/)  u.  ( A  X.  {  .0.  } ) )  =  ( ( A  X.  {  .0.  } )  u.  (/) )
145 un0 3492 . . . . . . . . . . . 12  |-  ( ( A  X.  {  .0.  } )  u.  (/) )  =  ( A  X.  {  .0.  } )
146144, 145eqtr2i 2317 . . . . . . . . . . 11  |-  ( A  X.  {  .0.  }
)  =  ( (/)  u.  ( A  X.  {  .0.  } ) )
147142, 143, 1463eqtr4g 2353 . . . . . . . . . 10  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
( a  u.  ( A  X.  {  .0.  }
) )  |`  A )  =  ( A  X.  {  .0.  } ) )
148 reseq1 4965 . . . . . . . . . . . 12  |-  ( y  =  ( a  u.  ( A  X.  {  .0.  } ) )  -> 
( y  |`  A )  =  ( ( a  u.  ( A  X.  {  .0.  } ) )  |`  A ) )
149148eqeq1d 2304 . . . . . . . . . . 11  |-  ( y  =  ( a  u.  ( A  X.  {  .0.  } ) )  -> 
( ( y  |`  A )  =  ( A  X.  {  .0.  } )  <->  ( ( a  u.  ( A  X.  {  .0.  } ) )  |`  A )  =  ( A  X.  {  .0.  } ) ) )
150149, 2elrab2 2938 . . . . . . . . . 10  |-  ( ( a  u.  ( A  X.  {  .0.  }
) )  e.  K  <->  ( ( a  u.  ( A  X.  {  .0.  }
) )  e.  G  /\  ( ( a  u.  ( A  X.  {  .0.  } ) )  |`  A )  =  ( A  X.  {  .0.  } ) ) )
151131, 147, 150sylanbrc 645 . . . . . . . . 9  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
a  u.  ( A  X.  {  .0.  }
) )  e.  K
)
152 resexg 5010 . . . . . . . . . 10  |-  ( ( a  u.  ( A  X.  {  .0.  }
) )  e.  K  ->  ( ( a  u.  ( A  X.  {  .0.  } ) )  |`  B )  e.  _V )
153151, 152syl 15 . . . . . . . . 9  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
( a  u.  ( A  X.  {  .0.  }
) )  |`  B )  e.  _V )
154 reseq1 4965 . . . . . . . . . 10  |-  ( x  =  ( a  u.  ( A  X.  {  .0.  } ) )  -> 
( x  |`  B )  =  ( ( a  u.  ( A  X.  {  .0.  } ) )  |`  B ) )
155154, 1fvmptg 5616 . . . . . . . . 9  |-  ( ( ( a  u.  ( A  X.  {  .0.  }
) )  e.  K  /\  ( ( a  u.  ( A  X.  {  .0.  } ) )  |`  B )  e.  _V )  ->  ( F `  ( a  u.  ( A  X.  {  .0.  }
) ) )  =  ( ( a  u.  ( A  X.  {  .0.  } ) )  |`  B ) )
156151, 153, 155syl2anc 642 . . . . . . . 8  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  ( F `  ( a  u.  ( A  X.  {  .0.  } ) ) )  =  ( ( a  u.  ( A  X.  {  .0.  } ) )  |`  B ) )
157 resundir 4986 . . . . . . . . 9  |-  ( ( a  u.  ( A  X.  {  .0.  }
) )  |`  B )  =  ( ( a  |`  B )  u.  (
( A  X.  {  .0.  } )  |`  B ) )
158 fnresdm 5369 . . . . . . . . . . . 12  |-  ( a  Fn  B  ->  (
a  |`  B )  =  a )
159107, 134, 1583syl 18 . . . . . . . . . . 11  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
a  |`  B )  =  a )
160 ffn 5405 . . . . . . . . . . . . . . 15  |-  ( ( A  X.  {  .0.  } ) : A --> {  .0.  }  ->  ( A  X.  {  .0.  } )  Fn  A )
161 fnresdisj 5370 . . . . . . . . . . . . . . 15  |-  ( ( A  X.  {  .0.  } )  Fn  A  -> 
( ( A  i^i  B )  =  (/)  <->  ( ( A  X.  {  .0.  }
)  |`  B )  =  (/) ) )
162110, 160, 161mp2b 9 . . . . . . . . . . . . . 14  |-  ( ( A  i^i  B )  =  (/)  <->  ( ( A  X.  {  .0.  }
)  |`  B )  =  (/) )
163162biimpi 186 . . . . . . . . . . . . 13  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( A  X.  {  .0.  } )  |`  B )  =  (/) )
1641633ad2ant3 978 . . . . . . . . . . . 12  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( ( A  X.  {  .0.  } )  |`  B )  =  (/) )
165164adantr 451 . . . . . . . . . . 11  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
( A  X.  {  .0.  } )  |`  B )  =  (/) )
166159, 165uneq12d 3343 . . . . . . . . . 10  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
( a  |`  B )  u.  ( ( A  X.  {  .0.  }
)  |`  B ) )  =  ( a  u.  (/) ) )
167 un0 3492 . . . . . . . . . 10  |-  ( a  u.  (/) )  =  a
168166, 167syl6eq 2344 . . . . . . . . 9  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
( a  |`  B )  u.  ( ( A  X.  {  .0.  }
)  |`  B ) )  =  a )
169157, 168syl5eq 2340 . . . . . . . 8  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
( a  u.  ( A  X.  {  .0.  }
) )  |`  B )  =  a )
170156, 169eqtrd 2328 . . . . . . 7  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  ( F `  ( a  u.  ( A  X.  {  .0.  } ) ) )  =  a )
17195, 13lmhmf 15807 . . . . . . . . . 10  |-  ( F  e.  ( L LMHom  D
)  ->  F : K
--> ( Base `  D
) )
172 ffn 5405 . . . . . . . . . 10  |-  ( F : K --> ( Base `  D )  ->  F  Fn  K )
17349, 171, 1723syl 18 . . . . . . . . 9  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  F  Fn  K )
174173adantr 451 . . . . . . . 8  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  F  Fn  K )
175 fnfvelrn 5678 . . . . . . . 8  |-  ( ( F  Fn  K  /\  ( a  u.  ( A  X.  {  .0.  }
) )  e.  K
)  ->  ( F `  ( a  u.  ( A  X.  {  .0.  }
) ) )  e. 
ran  F )
176174, 151, 175syl2anc 642 . . . . . . 7  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  ( F `  ( a  u.  ( A  X.  {  .0.  } ) ) )  e.  ran  F )
177170, 176eqeltrrd 2371 . . . . . 6  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  a  e.  ran  F )
178177ex 423 . . . . 5  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( a  e.  ( Base `  D
)  ->  a  e.  ran  F ) )
179178ssrdv 3198 . . . 4  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( Base `  D )  C_  ran  F )
180104, 179eqssd 3209 . . 3  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ran  F  =  ( Base `  D
) )
181 dff1o5 5497 . . 3  |-  ( F : K -1-1-onto-> ( Base `  D
)  <->  ( F : K -1-1-> ( Base `  D
)  /\  ran  F  =  ( Base `  D
) ) )
182100, 180, 181sylanbrc 645 . 2  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  F : K
-1-1-onto-> ( Base `  D )
)
18395, 13islmim 15831 . 2  |-  ( F  e.  ( L LMIso  D
)  <->  ( F  e.  ( L LMHom  D )  /\  F : K -1-1-onto-> ( Base `  D ) ) )
18449, 182, 183sylanbrc 645 1  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  F  e.  ( L LMIso  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   {crab 2560   _Vcvv 2801    u. cun 3163    i^i cin 3164    C_ wss 3165   (/)c0 3468   {csn 3653    e. cmpt 4093    X. cxp 4703   `'ccnv 4704   ran crn 4706    |` cres 4707   "cima 4708    Fn wfn 5266   -->wf 5267   -1-1->wf1 5268   -1-1-onto->wf1o 5270   ` cfv 5271  (class class class)co 5874   Basecbs 13164   ↾s cress 13165    ^s cpws 13363   0gc0g 13416   Mndcmnd 14377   Grpcgrp 14378  SubGrpcsubg 14631    GrpHom cghm 14696   LModclmod 15643   LSubSpclss 15705   LMHom clmhm 15792   LMIso clmim 15793
This theorem is referenced by:  pwslnmlem2  27298
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-fz 10799  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-prds 13364  df-pws 13366  df-0g 13420  df-mnd 14383  df-grp 14505  df-minusg 14506  df-sbg 14507  df-subg 14634  df-ghm 14697  df-mgp 15342  df-rng 15356  df-ur 15358  df-lmod 15645  df-lss 15706  df-lmhm 15795  df-lmim 15796
  Copyright terms: Public domain W3C validator