Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwssplit4 Unicode version

Theorem pwssplit4 26862
Description: Splitting for structure powers 4: maps isomorphically onto the other half. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Hypotheses
Ref Expression
pwssplit4.e  |-  E  =  ( R  ^s  ( A  u.  B ) )
pwssplit4.g  |-  G  =  ( Base `  E
)
pwssplit4.z  |-  .0.  =  ( 0g `  R )
pwssplit4.k  |-  K  =  { y  e.  G  |  ( y  |`  A )  =  ( A  X.  {  .0.  } ) }
pwssplit4.f  |-  F  =  ( x  e.  K  |->  ( x  |`  B ) )
pwssplit4.c  |-  C  =  ( R  ^s  A )
pwssplit4.d  |-  D  =  ( R  ^s  B )
pwssplit4.l  |-  L  =  ( Es  K )
Assertion
Ref Expression
pwssplit4  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  F  e.  ( L LMIso  D ) )
Distinct variable groups:    x, A, y    x, B, y    x, C, y    x, D, y   
x, E, y    x, G, y    x, K    x, L    x, R, y    x, V, y    x,  .0. , y
Allowed substitution hints:    F( x, y)    K( y)    L( y)

Proof of Theorem pwssplit4
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 pwssplit4.f . . . 4  |-  F  =  ( x  e.  K  |->  ( x  |`  B ) )
2 pwssplit4.k . . . . . 6  |-  K  =  { y  e.  G  |  ( y  |`  A )  =  ( A  X.  {  .0.  } ) }
3 ssrab2 3373 . . . . . 6  |-  { y  e.  G  |  ( y  |`  A )  =  ( A  X.  {  .0.  } ) } 
C_  G
42, 3eqsstri 3323 . . . . 5  |-  K  C_  G
5 resmpt 5133 . . . . 5  |-  ( K 
C_  G  ->  (
( x  e.  G  |->  ( x  |`  B ) )  |`  K )  =  ( x  e.  K  |->  ( x  |`  B ) ) )
64, 5ax-mp 8 . . . 4  |-  ( ( x  e.  G  |->  ( x  |`  B )
)  |`  K )  =  ( x  e.  K  |->  ( x  |`  B ) )
71, 6eqtr4i 2412 . . 3  |-  F  =  ( ( x  e.  G  |->  ( x  |`  B ) )  |`  K )
8 ssun2 3456 . . . . . 6  |-  B  C_  ( A  u.  B
)
98a1i 11 . . . . 5  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  B  C_  ( A  u.  B
) )
10 pwssplit4.e . . . . . 6  |-  E  =  ( R  ^s  ( A  u.  B ) )
11 pwssplit4.d . . . . . 6  |-  D  =  ( R  ^s  B )
12 pwssplit4.g . . . . . 6  |-  G  =  ( Base `  E
)
13 eqid 2389 . . . . . 6  |-  ( Base `  D )  =  (
Base `  D )
14 eqid 2389 . . . . . 6  |-  ( x  e.  G  |->  ( x  |`  B ) )  =  ( x  e.  G  |->  ( x  |`  B ) )
1510, 11, 12, 13, 14pwssplit3 26861 . . . . 5  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  B  C_  ( A  u.  B
) )  ->  (
x  e.  G  |->  ( x  |`  B )
)  e.  ( E LMHom 
D ) )
169, 15syld3an3 1229 . . . 4  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( x  e.  G  |->  ( x  |`  B ) )  e.  ( E LMHom  D ) )
17 simp1 957 . . . . . . . . . 10  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  R  e. 
LMod )
18 lmodgrp 15886 . . . . . . . . . 10  |-  ( R  e.  LMod  ->  R  e. 
Grp )
19 grpmnd 14746 . . . . . . . . . 10  |-  ( R  e.  Grp  ->  R  e.  Mnd )
2017, 18, 193syl 19 . . . . . . . . 9  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  R  e. 
Mnd )
21 ssun1 3455 . . . . . . . . . . 11  |-  A  C_  ( A  u.  B
)
22 ssexg 4292 . . . . . . . . . . 11  |-  ( ( A  C_  ( A  u.  B )  /\  ( A  u.  B )  e.  V )  ->  A  e.  _V )
2321, 22mpan 652 . . . . . . . . . 10  |-  ( ( A  u.  B )  e.  V  ->  A  e.  _V )
24233ad2ant2 979 . . . . . . . . 9  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  A  e. 
_V )
25 pwssplit4.c . . . . . . . . . 10  |-  C  =  ( R  ^s  A )
26 pwssplit4.z . . . . . . . . . 10  |-  .0.  =  ( 0g `  R )
2725, 26pws0g 14660 . . . . . . . . 9  |-  ( ( R  e.  Mnd  /\  A  e.  _V )  ->  ( A  X.  {  .0.  } )  =  ( 0g `  C ) )
2820, 24, 27syl2anc 643 . . . . . . . 8  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( A  X.  {  .0.  }
)  =  ( 0g
`  C ) )
2928eqeq2d 2400 . . . . . . 7  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( ( y  |`  A )  =  ( A  X.  {  .0.  } )  <->  ( y  |`  A )  =  ( 0g `  C ) ) )
3029rabbidv 2893 . . . . . 6  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  { y  e.  G  |  ( y  |`  A )  =  ( A  X.  {  .0.  } ) }  =  { y  e.  G  |  ( y  |`  A )  =  ( 0g `  C ) } )
312, 30syl5eq 2433 . . . . 5  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  K  =  { y  e.  G  |  ( y  |`  A )  =  ( 0g `  C ) } )
3221a1i 11 . . . . . . 7  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  A  C_  ( A  u.  B
) )
33 eqid 2389 . . . . . . . 8  |-  ( Base `  C )  =  (
Base `  C )
34 eqid 2389 . . . . . . . 8  |-  ( y  e.  G  |->  ( y  |`  A ) )  =  ( y  e.  G  |->  ( y  |`  A ) )
3510, 25, 12, 33, 34pwssplit3 26861 . . . . . . 7  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  A  C_  ( A  u.  B
) )  ->  (
y  e.  G  |->  ( y  |`  A )
)  e.  ( E LMHom 
C ) )
3632, 35syld3an3 1229 . . . . . 6  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( y  e.  G  |->  ( y  |`  A ) )  e.  ( E LMHom  C ) )
37 fvex 5684 . . . . . . . . 9  |-  ( 0g
`  C )  e. 
_V
3834mptiniseg 5306 . . . . . . . . 9  |-  ( ( 0g `  C )  e.  _V  ->  ( `' ( y  e.  G  |->  ( y  |`  A ) ) " { ( 0g `  C ) } )  =  { y  e.  G  |  ( y  |`  A )  =  ( 0g `  C ) } )
3937, 38ax-mp 8 . . . . . . . 8  |-  ( `' ( y  e.  G  |->  ( y  |`  A ) ) " { ( 0g `  C ) } )  =  {
y  e.  G  | 
( y  |`  A )  =  ( 0g `  C ) }
4039eqcomi 2393 . . . . . . 7  |-  { y  e.  G  |  ( y  |`  A )  =  ( 0g `  C ) }  =  ( `' ( y  e.  G  |->  ( y  |`  A ) ) " { ( 0g `  C ) } )
41 eqid 2389 . . . . . . 7  |-  ( 0g
`  C )  =  ( 0g `  C
)
42 eqid 2389 . . . . . . 7  |-  ( LSubSp `  E )  =  (
LSubSp `  E )
4340, 41, 42lmhmkerlss 16056 . . . . . 6  |-  ( ( y  e.  G  |->  ( y  |`  A )
)  e.  ( E LMHom 
C )  ->  { y  e.  G  |  ( y  |`  A )  =  ( 0g `  C ) }  e.  ( LSubSp `  E )
)
4436, 43syl 16 . . . . 5  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  { y  e.  G  |  ( y  |`  A )  =  ( 0g `  C ) }  e.  ( LSubSp `  E )
)
4531, 44eqeltrd 2463 . . . 4  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  K  e.  ( LSubSp `  E )
)
46 pwssplit4.l . . . . 5  |-  L  =  ( Es  K )
4742, 46reslmhm 16057 . . . 4  |-  ( ( ( x  e.  G  |->  ( x  |`  B ) )  e.  ( E LMHom 
D )  /\  K  e.  ( LSubSp `  E )
)  ->  ( (
x  e.  G  |->  ( x  |`  B )
)  |`  K )  e.  ( L LMHom  D ) )
4816, 45, 47syl2anc 643 . . 3  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( ( x  e.  G  |->  ( x  |`  B )
)  |`  K )  e.  ( L LMHom  D ) )
497, 48syl5eqel 2473 . 2  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  F  e.  ( L LMHom  D ) )
501fvtresfn 26437 . . . . . . 7  |-  ( a  e.  K  ->  ( F `  a )  =  ( a  |`  B ) )
51 ssexg 4292 . . . . . . . . . . 11  |-  ( ( B  C_  ( A  u.  B )  /\  ( A  u.  B )  e.  V )  ->  B  e.  _V )
528, 51mpan 652 . . . . . . . . . 10  |-  ( ( A  u.  B )  e.  V  ->  B  e.  _V )
53523ad2ant2 979 . . . . . . . . 9  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  B  e. 
_V )
5411, 26pws0g 14660 . . . . . . . . 9  |-  ( ( R  e.  Mnd  /\  B  e.  _V )  ->  ( B  X.  {  .0.  } )  =  ( 0g `  D ) )
5520, 53, 54syl2anc 643 . . . . . . . 8  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( B  X.  {  .0.  }
)  =  ( 0g
`  D ) )
5655eqcomd 2394 . . . . . . 7  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( 0g
`  D )  =  ( B  X.  {  .0.  } ) )
5750, 56eqeqan12rd 2405 . . . . . 6  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  K )  ->  (
( F `  a
)  =  ( 0g
`  D )  <->  ( a  |`  B )  =  ( B  X.  {  .0.  } ) ) )
58 reseq1 5082 . . . . . . . . . 10  |-  ( y  =  a  ->  (
y  |`  A )  =  ( a  |`  A ) )
5958eqeq1d 2397 . . . . . . . . 9  |-  ( y  =  a  ->  (
( y  |`  A )  =  ( A  X.  {  .0.  } )  <->  ( a  |`  A )  =  ( A  X.  {  .0.  } ) ) )
6059, 2elrab2 3039 . . . . . . . 8  |-  ( a  e.  K  <->  ( a  e.  G  /\  (
a  |`  A )  =  ( A  X.  {  .0.  } ) ) )
61 uneq12 3441 . . . . . . . . . . . . 13  |-  ( ( ( a  |`  A )  =  ( A  X.  {  .0.  } )  /\  ( a  |`  B )  =  ( B  X.  {  .0.  } ) )  ->  ( ( a  |`  A )  u.  (
a  |`  B ) )  =  ( ( A  X.  {  .0.  }
)  u.  ( B  X.  {  .0.  }
) ) )
62 resundi 5102 . . . . . . . . . . . . 13  |-  ( a  |`  ( A  u.  B
) )  =  ( ( a  |`  A )  u.  ( a  |`  B ) )
63 xpundir 4873 . . . . . . . . . . . . 13  |-  ( ( A  u.  B )  X.  {  .0.  }
)  =  ( ( A  X.  {  .0.  } )  u.  ( B  X.  {  .0.  }
) )
6461, 62, 633eqtr4g 2446 . . . . . . . . . . . 12  |-  ( ( ( a  |`  A )  =  ( A  X.  {  .0.  } )  /\  ( a  |`  B )  =  ( B  X.  {  .0.  } ) )  ->  ( a  |`  ( A  u.  B
) )  =  ( ( A  u.  B
)  X.  {  .0.  } ) )
6564adantll 695 . . . . . . . . . . 11  |-  ( ( ( a  e.  G  /\  ( a  |`  A )  =  ( A  X.  {  .0.  } ) )  /\  ( a  |`  B )  =  ( B  X.  {  .0.  } ) )  ->  (
a  |`  ( A  u.  B ) )  =  ( ( A  u.  B )  X.  {  .0.  } ) )
6665adantl 453 . . . . . . . . . 10  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  (
( a  e.  G  /\  ( a  |`  A )  =  ( A  X.  {  .0.  } ) )  /\  ( a  |`  B )  =  ( B  X.  {  .0.  } ) ) )  -> 
( a  |`  ( A  u.  B )
)  =  ( ( A  u.  B )  X.  {  .0.  }
) )
67 eqid 2389 . . . . . . . . . . . 12  |-  ( Base `  R )  =  (
Base `  R )
68 simpl1 960 . . . . . . . . . . . 12  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  (
( a  e.  G  /\  ( a  |`  A )  =  ( A  X.  {  .0.  } ) )  /\  ( a  |`  B )  =  ( B  X.  {  .0.  } ) ) )  ->  R  e.  LMod )
69 simp2 958 . . . . . . . . . . . . 13  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( A  u.  B )  e.  V )
7069adantr 452 . . . . . . . . . . . 12  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  (
( a  e.  G  /\  ( a  |`  A )  =  ( A  X.  {  .0.  } ) )  /\  ( a  |`  B )  =  ( B  X.  {  .0.  } ) ) )  -> 
( A  u.  B
)  e.  V )
71 simprll 739 . . . . . . . . . . . 12  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  (
( a  e.  G  /\  ( a  |`  A )  =  ( A  X.  {  .0.  } ) )  /\  ( a  |`  B )  =  ( B  X.  {  .0.  } ) ) )  -> 
a  e.  G )
7210, 67, 12, 68, 70, 71pwselbas 13640 . . . . . . . . . . 11  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  (
( a  e.  G  /\  ( a  |`  A )  =  ( A  X.  {  .0.  } ) )  /\  ( a  |`  B )  =  ( B  X.  {  .0.  } ) ) )  -> 
a : ( A  u.  B ) --> (
Base `  R )
)
73 ffn 5533 . . . . . . . . . . 11  |-  ( a : ( A  u.  B ) --> ( Base `  R )  ->  a  Fn  ( A  u.  B
) )
74 fnresdm 5496 . . . . . . . . . . 11  |-  ( a  Fn  ( A  u.  B )  ->  (
a  |`  ( A  u.  B ) )  =  a )
7572, 73, 743syl 19 . . . . . . . . . 10  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  (
( a  e.  G  /\  ( a  |`  A )  =  ( A  X.  {  .0.  } ) )  /\  ( a  |`  B )  =  ( B  X.  {  .0.  } ) ) )  -> 
( a  |`  ( A  u.  B )
)  =  a )
7610, 26pws0g 14660 . . . . . . . . . . . . 13  |-  ( ( R  e.  Mnd  /\  ( A  u.  B
)  e.  V )  ->  ( ( A  u.  B )  X. 
{  .0.  } )  =  ( 0g `  E ) )
7720, 69, 76syl2anc 643 . . . . . . . . . . . 12  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( ( A  u.  B )  X.  {  .0.  }
)  =  ( 0g
`  E ) )
7810pwslmod 15975 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V )  ->  E  e.  LMod )
79783adant3 977 . . . . . . . . . . . . . 14  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  E  e. 
LMod )
8042lsssubg 15962 . . . . . . . . . . . . . 14  |-  ( ( E  e.  LMod  /\  K  e.  ( LSubSp `  E )
)  ->  K  e.  (SubGrp `  E ) )
8179, 45, 80syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  K  e.  (SubGrp `  E )
)
82 eqid 2389 . . . . . . . . . . . . . 14  |-  ( 0g
`  E )  =  ( 0g `  E
)
8346, 82subg0 14879 . . . . . . . . . . . . 13  |-  ( K  e.  (SubGrp `  E
)  ->  ( 0g `  E )  =  ( 0g `  L ) )
8481, 83syl 16 . . . . . . . . . . . 12  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( 0g
`  E )  =  ( 0g `  L
) )
8577, 84eqtrd 2421 . . . . . . . . . . 11  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( ( A  u.  B )  X.  {  .0.  }
)  =  ( 0g
`  L ) )
8685adantr 452 . . . . . . . . . 10  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  (
( a  e.  G  /\  ( a  |`  A )  =  ( A  X.  {  .0.  } ) )  /\  ( a  |`  B )  =  ( B  X.  {  .0.  } ) ) )  -> 
( ( A  u.  B )  X.  {  .0.  } )  =  ( 0g `  L ) )
8766, 75, 863eqtr3d 2429 . . . . . . . . 9  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  (
( a  e.  G  /\  ( a  |`  A )  =  ( A  X.  {  .0.  } ) )  /\  ( a  |`  B )  =  ( B  X.  {  .0.  } ) ) )  -> 
a  =  ( 0g
`  L ) )
8887exp32 589 . . . . . . . 8  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( ( a  e.  G  /\  ( a  |`  A )  =  ( A  X.  {  .0.  } ) )  ->  ( ( a  |`  B )  =  ( B  X.  {  .0.  } )  ->  a  =  ( 0g `  L ) ) ) )
8960, 88syl5bi 209 . . . . . . 7  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( a  e.  K  ->  (
( a  |`  B )  =  ( B  X.  {  .0.  } )  -> 
a  =  ( 0g
`  L ) ) ) )
9089imp 419 . . . . . 6  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  K )  ->  (
( a  |`  B )  =  ( B  X.  {  .0.  } )  -> 
a  =  ( 0g
`  L ) ) )
9157, 90sylbid 207 . . . . 5  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  K )  ->  (
( F `  a
)  =  ( 0g
`  D )  -> 
a  =  ( 0g
`  L ) ) )
9291ralrimiva 2734 . . . 4  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  A. a  e.  K  ( ( F `  a )  =  ( 0g `  D )  ->  a  =  ( 0g `  L ) ) )
93 lmghm 16036 . . . . 5  |-  ( F  e.  ( L LMHom  D
)  ->  F  e.  ( L  GrpHom  D ) )
9446, 12ressbas2 13449 . . . . . . 7  |-  ( K 
C_  G  ->  K  =  ( Base `  L
) )
954, 94ax-mp 8 . . . . . 6  |-  K  =  ( Base `  L
)
96 eqid 2389 . . . . . 6  |-  ( 0g
`  L )  =  ( 0g `  L
)
97 eqid 2389 . . . . . 6  |-  ( 0g
`  D )  =  ( 0g `  D
)
9895, 13, 96, 97ghmf1 14963 . . . . 5  |-  ( F  e.  ( L  GrpHom  D )  ->  ( F : K -1-1-> ( Base `  D
)  <->  A. a  e.  K  ( ( F `  a )  =  ( 0g `  D )  ->  a  =  ( 0g `  L ) ) ) )
9949, 93, 983syl 19 . . . 4  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( F : K -1-1-> ( Base `  D )  <->  A. a  e.  K  ( ( F `  a )  =  ( 0g `  D )  ->  a  =  ( 0g `  L ) ) ) )
10092, 99mpbird 224 . . 3  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  F : K -1-1-> ( Base `  D
) )
101 eqid 2389 . . . . . 6  |-  ( Base `  L )  =  (
Base `  L )
102101, 13lmhmf 16039 . . . . 5  |-  ( F  e.  ( L LMHom  D
)  ->  F :
( Base `  L ) --> ( Base `  D )
)
103 frn 5539 . . . . 5  |-  ( F : ( Base `  L
) --> ( Base `  D
)  ->  ran  F  C_  ( Base `  D )
)
10449, 102, 1033syl 19 . . . 4  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ran  F  C_  ( Base `  D
) )
10511, 67, 13pwselbasb 13639 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  LMod  /\  B  e.  _V )  ->  (
a  e.  ( Base `  D )  <->  a : B
--> ( Base `  R
) ) )
10617, 53, 105syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( a  e.  ( Base `  D
)  <->  a : B --> ( Base `  R )
) )
107106biimpa 471 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  a : B --> ( Base `  R
) )
108 fvex 5684 . . . . . . . . . . . . . . . . 17  |-  ( 0g
`  R )  e. 
_V
10926, 108eqeltri 2459 . . . . . . . . . . . . . . . 16  |-  .0.  e.  _V
110109fconst 5571 . . . . . . . . . . . . . . 15  |-  ( A  X.  {  .0.  }
) : A --> {  .0.  }
111110a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  ( A  X.  {  .0.  }
) : A --> {  .0.  } )
11220adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  R  e.  Mnd )
11367, 26mndidcl 14643 . . . . . . . . . . . . . . . 16  |-  ( R  e.  Mnd  ->  .0.  e.  ( Base `  R
) )
114112, 113syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  .0.  e.  ( Base `  R
) )
115114snssd 3888 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  {  .0.  } 
C_  ( Base `  R
) )
116 fss 5541 . . . . . . . . . . . . . 14  |-  ( ( ( A  X.  {  .0.  } ) : A --> {  .0.  }  /\  {  .0.  }  C_  ( Base `  R ) )  -> 
( A  X.  {  .0.  } ) : A --> ( Base `  R )
)
117111, 115, 116syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  ( A  X.  {  .0.  }
) : A --> ( Base `  R ) )
118 incom 3478 . . . . . . . . . . . . . . 15  |-  ( B  i^i  A )  =  ( A  i^i  B
)
119 simp3 959 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( A  i^i  B )  =  (/) )
120118, 119syl5eq 2433 . . . . . . . . . . . . . 14  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( B  i^i  A )  =  (/) )
121120adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  ( B  i^i  A )  =  (/) )
122 fun 5549 . . . . . . . . . . . . 13  |-  ( ( ( a : B --> ( Base `  R )  /\  ( A  X.  {  .0.  } ) : A --> ( Base `  R )
)  /\  ( B  i^i  A )  =  (/) )  ->  ( a  u.  ( A  X.  {  .0.  } ) ) : ( B  u.  A
) --> ( ( Base `  R )  u.  ( Base `  R ) ) )
123107, 117, 121, 122syl21anc 1183 . . . . . . . . . . . 12  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
a  u.  ( A  X.  {  .0.  }
) ) : ( B  u.  A ) --> ( ( Base `  R
)  u.  ( Base `  R ) ) )
124 uncom 3436 . . . . . . . . . . . . 13  |-  ( B  u.  A )  =  ( A  u.  B
)
125 unidm 3435 . . . . . . . . . . . . 13  |-  ( (
Base `  R )  u.  ( Base `  R
) )  =  (
Base `  R )
126124, 125feq23i 5529 . . . . . . . . . . . 12  |-  ( ( a  u.  ( A  X.  {  .0.  }
) ) : ( B  u.  A ) --> ( ( Base `  R
)  u.  ( Base `  R ) )  <->  ( a  u.  ( A  X.  {  .0.  } ) ) : ( A  u.  B
) --> ( Base `  R
) )
127123, 126sylib 189 . . . . . . . . . . 11  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
a  u.  ( A  X.  {  .0.  }
) ) : ( A  u.  B ) --> ( Base `  R
) )
12810, 67, 12pwselbasb 13639 . . . . . . . . . . . . 13  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V )  ->  (
( a  u.  ( A  X.  {  .0.  }
) )  e.  G  <->  ( a  u.  ( A  X.  {  .0.  }
) ) : ( A  u.  B ) --> ( Base `  R
) ) )
1291283adant3 977 . . . . . . . . . . . 12  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( ( a  u.  ( A  X.  {  .0.  }
) )  e.  G  <->  ( a  u.  ( A  X.  {  .0.  }
) ) : ( A  u.  B ) --> ( Base `  R
) ) )
130129adantr 452 . . . . . . . . . . 11  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
( a  u.  ( A  X.  {  .0.  }
) )  e.  G  <->  ( a  u.  ( A  X.  {  .0.  }
) ) : ( A  u.  B ) --> ( Base `  R
) ) )
131127, 130mpbird 224 . . . . . . . . . 10  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
a  u.  ( A  X.  {  .0.  }
) )  e.  G
)
132 simpl3 962 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  ( A  i^i  B )  =  (/) )
133118, 132syl5eq 2433 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  ( B  i^i  A )  =  (/) )
134 ffn 5533 . . . . . . . . . . . . . 14  |-  ( a : B --> ( Base `  R )  ->  a  Fn  B )
135 fnresdisj 5497 . . . . . . . . . . . . . 14  |-  ( a  Fn  B  ->  (
( B  i^i  A
)  =  (/)  <->  ( a  |`  A )  =  (/) ) )
136107, 134, 1353syl 19 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
( B  i^i  A
)  =  (/)  <->  ( a  |`  A )  =  (/) ) )
137133, 136mpbid 202 . . . . . . . . . . . 12  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
a  |`  A )  =  (/) )
138 fnconstg 5573 . . . . . . . . . . . . . 14  |-  (  .0. 
e.  _V  ->  ( A  X.  {  .0.  }
)  Fn  A )
139 fnresdm 5496 . . . . . . . . . . . . . 14  |-  ( ( A  X.  {  .0.  } )  Fn  A  -> 
( ( A  X.  {  .0.  } )  |`  A )  =  ( A  X.  {  .0.  } ) )
140109, 138, 139mp2b 10 . . . . . . . . . . . . 13  |-  ( ( A  X.  {  .0.  } )  |`  A )  =  ( A  X.  {  .0.  } )
141140a1i 11 . . . . . . . . . . . 12  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
( A  X.  {  .0.  } )  |`  A )  =  ( A  X.  {  .0.  } ) )
142137, 141uneq12d 3447 . . . . . . . . . . 11  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
( a  |`  A )  u.  ( ( A  X.  {  .0.  }
)  |`  A ) )  =  ( (/)  u.  ( A  X.  {  .0.  }
) ) )
143 resundir 5103 . . . . . . . . . . 11  |-  ( ( a  u.  ( A  X.  {  .0.  }
) )  |`  A )  =  ( ( a  |`  A )  u.  (
( A  X.  {  .0.  } )  |`  A ) )
144 uncom 3436 . . . . . . . . . . . 12  |-  ( (/)  u.  ( A  X.  {  .0.  } ) )  =  ( ( A  X.  {  .0.  } )  u.  (/) )
145 un0 3597 . . . . . . . . . . . 12  |-  ( ( A  X.  {  .0.  } )  u.  (/) )  =  ( A  X.  {  .0.  } )
146144, 145eqtr2i 2410 . . . . . . . . . . 11  |-  ( A  X.  {  .0.  }
)  =  ( (/)  u.  ( A  X.  {  .0.  } ) )
147142, 143, 1463eqtr4g 2446 . . . . . . . . . 10  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
( a  u.  ( A  X.  {  .0.  }
) )  |`  A )  =  ( A  X.  {  .0.  } ) )
148 reseq1 5082 . . . . . . . . . . . 12  |-  ( y  =  ( a  u.  ( A  X.  {  .0.  } ) )  -> 
( y  |`  A )  =  ( ( a  u.  ( A  X.  {  .0.  } ) )  |`  A ) )
149148eqeq1d 2397 . . . . . . . . . . 11  |-  ( y  =  ( a  u.  ( A  X.  {  .0.  } ) )  -> 
( ( y  |`  A )  =  ( A  X.  {  .0.  } )  <->  ( ( a  u.  ( A  X.  {  .0.  } ) )  |`  A )  =  ( A  X.  {  .0.  } ) ) )
150149, 2elrab2 3039 . . . . . . . . . 10  |-  ( ( a  u.  ( A  X.  {  .0.  }
) )  e.  K  <->  ( ( a  u.  ( A  X.  {  .0.  }
) )  e.  G  /\  ( ( a  u.  ( A  X.  {  .0.  } ) )  |`  A )  =  ( A  X.  {  .0.  } ) ) )
151131, 147, 150sylanbrc 646 . . . . . . . . 9  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
a  u.  ( A  X.  {  .0.  }
) )  e.  K
)
152 resexg 5127 . . . . . . . . . 10  |-  ( ( a  u.  ( A  X.  {  .0.  }
) )  e.  K  ->  ( ( a  u.  ( A  X.  {  .0.  } ) )  |`  B )  e.  _V )
153151, 152syl 16 . . . . . . . . 9  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
( a  u.  ( A  X.  {  .0.  }
) )  |`  B )  e.  _V )
154 reseq1 5082 . . . . . . . . . 10  |-  ( x  =  ( a  u.  ( A  X.  {  .0.  } ) )  -> 
( x  |`  B )  =  ( ( a  u.  ( A  X.  {  .0.  } ) )  |`  B ) )
155154, 1fvmptg 5745 . . . . . . . . 9  |-  ( ( ( a  u.  ( A  X.  {  .0.  }
) )  e.  K  /\  ( ( a  u.  ( A  X.  {  .0.  } ) )  |`  B )  e.  _V )  ->  ( F `  ( a  u.  ( A  X.  {  .0.  }
) ) )  =  ( ( a  u.  ( A  X.  {  .0.  } ) )  |`  B ) )
156151, 153, 155syl2anc 643 . . . . . . . 8  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  ( F `  ( a  u.  ( A  X.  {  .0.  } ) ) )  =  ( ( a  u.  ( A  X.  {  .0.  } ) )  |`  B ) )
157 resundir 5103 . . . . . . . . 9  |-  ( ( a  u.  ( A  X.  {  .0.  }
) )  |`  B )  =  ( ( a  |`  B )  u.  (
( A  X.  {  .0.  } )  |`  B ) )
158 fnresdm 5496 . . . . . . . . . . . 12  |-  ( a  Fn  B  ->  (
a  |`  B )  =  a )
159107, 134, 1583syl 19 . . . . . . . . . . 11  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
a  |`  B )  =  a )
160 ffn 5533 . . . . . . . . . . . . . . 15  |-  ( ( A  X.  {  .0.  } ) : A --> {  .0.  }  ->  ( A  X.  {  .0.  } )  Fn  A )
161 fnresdisj 5497 . . . . . . . . . . . . . . 15  |-  ( ( A  X.  {  .0.  } )  Fn  A  -> 
( ( A  i^i  B )  =  (/)  <->  ( ( A  X.  {  .0.  }
)  |`  B )  =  (/) ) )
162110, 160, 161mp2b 10 . . . . . . . . . . . . . 14  |-  ( ( A  i^i  B )  =  (/)  <->  ( ( A  X.  {  .0.  }
)  |`  B )  =  (/) )
163162biimpi 187 . . . . . . . . . . . . 13  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( A  X.  {  .0.  } )  |`  B )  =  (/) )
1641633ad2ant3 980 . . . . . . . . . . . 12  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( ( A  X.  {  .0.  } )  |`  B )  =  (/) )
165164adantr 452 . . . . . . . . . . 11  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
( A  X.  {  .0.  } )  |`  B )  =  (/) )
166159, 165uneq12d 3447 . . . . . . . . . 10  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
( a  |`  B )  u.  ( ( A  X.  {  .0.  }
)  |`  B ) )  =  ( a  u.  (/) ) )
167 un0 3597 . . . . . . . . . 10  |-  ( a  u.  (/) )  =  a
168166, 167syl6eq 2437 . . . . . . . . 9  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
( a  |`  B )  u.  ( ( A  X.  {  .0.  }
)  |`  B ) )  =  a )
169157, 168syl5eq 2433 . . . . . . . 8  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  (
( a  u.  ( A  X.  {  .0.  }
) )  |`  B )  =  a )
170156, 169eqtrd 2421 . . . . . . 7  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  ( F `  ( a  u.  ( A  X.  {  .0.  } ) ) )  =  a )
17195, 13lmhmf 16039 . . . . . . . . . 10  |-  ( F  e.  ( L LMHom  D
)  ->  F : K
--> ( Base `  D
) )
172 ffn 5533 . . . . . . . . . 10  |-  ( F : K --> ( Base `  D )  ->  F  Fn  K )
17349, 171, 1723syl 19 . . . . . . . . 9  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  F  Fn  K )
174173adantr 452 . . . . . . . 8  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  F  Fn  K )
175 fnfvelrn 5808 . . . . . . . 8  |-  ( ( F  Fn  K  /\  ( a  u.  ( A  X.  {  .0.  }
) )  e.  K
)  ->  ( F `  ( a  u.  ( A  X.  {  .0.  }
) ) )  e. 
ran  F )
176174, 151, 175syl2anc 643 . . . . . . 7  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  ( F `  ( a  u.  ( A  X.  {  .0.  } ) ) )  e.  ran  F )
177170, 176eqeltrrd 2464 . . . . . 6  |-  ( ( ( R  e.  LMod  /\  ( A  u.  B
)  e.  V  /\  ( A  i^i  B )  =  (/) )  /\  a  e.  ( Base `  D
) )  ->  a  e.  ran  F )
178177ex 424 . . . . 5  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( a  e.  ( Base `  D
)  ->  a  e.  ran  F ) )
179178ssrdv 3299 . . . 4  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ( Base `  D )  C_  ran  F )
180104, 179eqssd 3310 . . 3  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  ran  F  =  ( Base `  D
) )
181 dff1o5 5625 . . 3  |-  ( F : K -1-1-onto-> ( Base `  D
)  <->  ( F : K -1-1-> ( Base `  D
)  /\  ran  F  =  ( Base `  D
) ) )
182100, 180, 181sylanbrc 646 . 2  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  F : K
-1-1-onto-> ( Base `  D )
)
18395, 13islmim 16063 . 2  |-  ( F  e.  ( L LMIso  D
)  <->  ( F  e.  ( L LMHom  D )  /\  F : K -1-1-onto-> ( Base `  D ) ) )
18449, 182, 183sylanbrc 646 1  |-  ( ( R  e.  LMod  /\  ( A  u.  B )  e.  V  /\  ( A  i^i  B )  =  (/) )  ->  F  e.  ( L LMIso  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   A.wral 2651   {crab 2655   _Vcvv 2901    u. cun 3263    i^i cin 3264    C_ wss 3265   (/)c0 3573   {csn 3759    e. cmpt 4209    X. cxp 4818   `'ccnv 4819   ran crn 4821    |` cres 4822   "cima 4823    Fn wfn 5391   -->wf 5392   -1-1->wf1 5393   -1-1-onto->wf1o 5395   ` cfv 5396  (class class class)co 6022   Basecbs 13398   ↾s cress 13399    ^s cpws 13599   0gc0g 13652   Mndcmnd 14613   Grpcgrp 14614  SubGrpcsubg 14867    GrpHom cghm 14932   LModclmod 15879   LSubSpclss 15937   LMHom clmhm 16024   LMIso clmim 16025
This theorem is referenced by:  pwslnmlem2  26866
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-cnex 8981  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-mulcom 8989  ax-addass 8990  ax-mulass 8991  ax-distr 8992  ax-i2m1 8993  ax-1ne0 8994  ax-1rid 8995  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000  ax-pre-ltadd 9001  ax-pre-mulgt0 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-of 6246  df-1st 6290  df-2nd 6291  df-riota 6487  df-recs 6571  df-rdg 6606  df-1o 6662  df-oadd 6666  df-er 6843  df-map 6958  df-ixp 7002  df-en 7048  df-dom 7049  df-sdom 7050  df-fin 7051  df-sup 7383  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-sub 9227  df-neg 9228  df-nn 9935  df-2 9992  df-3 9993  df-4 9994  df-5 9995  df-6 9996  df-7 9997  df-8 9998  df-9 9999  df-10 10000  df-n0 10156  df-z 10217  df-dec 10317  df-uz 10423  df-fz 10978  df-struct 13400  df-ndx 13401  df-slot 13402  df-base 13403  df-sets 13404  df-ress 13405  df-plusg 13471  df-mulr 13472  df-sca 13474  df-vsca 13475  df-tset 13477  df-ple 13478  df-ds 13480  df-hom 13482  df-cco 13483  df-prds 13600  df-pws 13602  df-0g 13656  df-mnd 14619  df-grp 14741  df-minusg 14742  df-sbg 14743  df-subg 14870  df-ghm 14933  df-mgp 15578  df-rng 15592  df-ur 15594  df-lmod 15881  df-lss 15938  df-lmhm 16027  df-lmim 16028
  Copyright terms: Public domain W3C validator