MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwssub Structured version   Unicode version

Theorem pwssub 14923
Description: Subtraction in a group power. (Contributed by Mario Carneiro, 12-Jan-2015.)
Hypotheses
Ref Expression
pwsgrp.y  |-  Y  =  ( R  ^s  I )
pwsinvg.b  |-  B  =  ( Base `  Y
)
pwssub.m  |-  M  =  ( -g `  R
)
pwssub.n  |-  .-  =  ( -g `  Y )
Assertion
Ref Expression
pwssub  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( F  .-  G
)  =  ( F  o F M G ) )

Proof of Theorem pwssub
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 732 . . . 4  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  ->  I  e.  V )
2 pwsgrp.y . . . . . 6  |-  Y  =  ( R  ^s  I )
3 eqid 2435 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
4 pwsinvg.b . . . . . 6  |-  B  =  ( Base `  Y
)
5 simpll 731 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  ->  R  e.  Grp )
6 simprl 733 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  ->  F  e.  B )
72, 3, 4, 5, 1, 6pwselbas 13703 . . . . 5  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  ->  F : I --> ( Base `  R ) )
87ffvelrnda 5862 . . . 4  |-  ( ( ( ( R  e. 
Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B )
)  /\  x  e.  I )  ->  ( F `  x )  e.  ( Base `  R
) )
9 fvex 5734 . . . . 5  |-  ( ( inv g `  R
) `  ( G `  x ) )  e. 
_V
109a1i 11 . . . 4  |-  ( ( ( ( R  e. 
Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B )
)  /\  x  e.  I )  ->  (
( inv g `  R ) `  ( G `  x )
)  e.  _V )
117feqmptd 5771 . . . 4  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  ->  F  =  ( x  e.  I  |->  ( F `
 x ) ) )
12 simprr 734 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  ->  G  e.  B )
13 eqid 2435 . . . . . . 7  |-  ( inv g `  R )  =  ( inv g `  R )
14 eqid 2435 . . . . . . 7  |-  ( inv g `  Y )  =  ( inv g `  Y )
152, 4, 13, 14pwsinvg 14922 . . . . . 6  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  G  e.  B )  ->  ( ( inv g `  Y ) `  G
)  =  ( ( inv g `  R
)  o.  G ) )
165, 1, 12, 15syl3anc 1184 . . . . 5  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( ( inv g `  Y ) `  G
)  =  ( ( inv g `  R
)  o.  G ) )
172, 3, 4, 5, 1, 12pwselbas 13703 . . . . . . 7  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  ->  G : I --> ( Base `  R ) )
1817ffvelrnda 5862 . . . . . 6  |-  ( ( ( ( R  e. 
Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B )
)  /\  x  e.  I )  ->  ( G `  x )  e.  ( Base `  R
) )
1917feqmptd 5771 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  ->  G  =  ( x  e.  I  |->  ( G `
 x ) ) )
203, 13grpinvf 14841 . . . . . . . 8  |-  ( R  e.  Grp  ->  ( inv g `  R ) : ( Base `  R
) --> ( Base `  R
) )
2120ad2antrr 707 . . . . . . 7  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( inv g `  R ) : (
Base `  R ) --> ( Base `  R )
)
2221feqmptd 5771 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( inv g `  R )  =  ( y  e.  ( Base `  R )  |->  ( ( inv g `  R
) `  y )
) )
23 fveq2 5720 . . . . . 6  |-  ( y  =  ( G `  x )  ->  (
( inv g `  R ) `  y
)  =  ( ( inv g `  R
) `  ( G `  x ) ) )
2418, 19, 22, 23fmptco 5893 . . . . 5  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( ( inv g `  R )  o.  G
)  =  ( x  e.  I  |->  ( ( inv g `  R
) `  ( G `  x ) ) ) )
2516, 24eqtrd 2467 . . . 4  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( ( inv g `  Y ) `  G
)  =  ( x  e.  I  |->  ( ( inv g `  R
) `  ( G `  x ) ) ) )
261, 8, 10, 11, 25offval2 6314 . . 3  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( F  o F ( +g  `  R
) ( ( inv g `  Y ) `
 G ) )  =  ( x  e.  I  |->  ( ( F `
 x ) ( +g  `  R ) ( ( inv g `  R ) `  ( G `  x )
) ) ) )
272pwsgrp 14921 . . . . . 6  |-  ( ( R  e.  Grp  /\  I  e.  V )  ->  Y  e.  Grp )
2827adantr 452 . . . . 5  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  ->  Y  e.  Grp )
294, 14grpinvcl 14842 . . . . 5  |-  ( ( Y  e.  Grp  /\  G  e.  B )  ->  ( ( inv g `  Y ) `  G
)  e.  B )
3028, 12, 29syl2anc 643 . . . 4  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( ( inv g `  Y ) `  G
)  e.  B )
31 eqid 2435 . . . 4  |-  ( +g  `  R )  =  ( +g  `  R )
32 eqid 2435 . . . 4  |-  ( +g  `  Y )  =  ( +g  `  Y )
332, 4, 5, 1, 6, 30, 31, 32pwsplusgval 13704 . . 3  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( F ( +g  `  Y ) ( ( inv g `  Y
) `  G )
)  =  ( F  o F ( +g  `  R ) ( ( inv g `  Y
) `  G )
) )
34 pwssub.m . . . . . 6  |-  M  =  ( -g `  R
)
353, 31, 13, 34grpsubval 14840 . . . . 5  |-  ( ( ( F `  x
)  e.  ( Base `  R )  /\  ( G `  x )  e.  ( Base `  R
) )  ->  (
( F `  x
) M ( G `
 x ) )  =  ( ( F `
 x ) ( +g  `  R ) ( ( inv g `  R ) `  ( G `  x )
) ) )
368, 18, 35syl2anc 643 . . . 4  |-  ( ( ( ( R  e. 
Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B )
)  /\  x  e.  I )  ->  (
( F `  x
) M ( G `
 x ) )  =  ( ( F `
 x ) ( +g  `  R ) ( ( inv g `  R ) `  ( G `  x )
) ) )
3736mpteq2dva 4287 . . 3  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( x  e.  I  |->  ( ( F `  x ) M ( G `  x ) ) )  =  ( x  e.  I  |->  ( ( F `  x
) ( +g  `  R
) ( ( inv g `  R ) `
 ( G `  x ) ) ) ) )
3826, 33, 373eqtr4d 2477 . 2  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( F ( +g  `  Y ) ( ( inv g `  Y
) `  G )
)  =  ( x  e.  I  |->  ( ( F `  x ) M ( G `  x ) ) ) )
39 pwssub.n . . . 4  |-  .-  =  ( -g `  Y )
404, 32, 14, 39grpsubval 14840 . . 3  |-  ( ( F  e.  B  /\  G  e.  B )  ->  ( F  .-  G
)  =  ( F ( +g  `  Y
) ( ( inv g `  Y ) `
 G ) ) )
4140adantl 453 . 2  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( F  .-  G
)  =  ( F ( +g  `  Y
) ( ( inv g `  Y ) `
 G ) ) )
421, 8, 18, 11, 19offval2 6314 . 2  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( F  o F M G )  =  ( x  e.  I  |->  ( ( F `  x ) M ( G `  x ) ) ) )
4338, 41, 423eqtr4d 2477 1  |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( F  .-  G
)  =  ( F  o F M G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   _Vcvv 2948    e. cmpt 4258    o. ccom 4874   -->wf 5442   ` cfv 5446  (class class class)co 6073    o Fcof 6295   Basecbs 13461   +g cplusg 13521    ^s cpws 13662   Grpcgrp 14677   inv gcminusg 14678   -gcsg 14680
This theorem is referenced by:  evl1subd  19947
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-map 7012  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-10 10058  df-n0 10214  df-z 10275  df-dec 10375  df-uz 10481  df-fz 11036  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-plusg 13534  df-mulr 13535  df-sca 13537  df-vsca 13538  df-tset 13540  df-ple 13541  df-ds 13543  df-hom 13545  df-cco 13546  df-prds 13663  df-pws 13665  df-0g 13719  df-mnd 14682  df-grp 14804  df-minusg 14805  df-sbg 14806
  Copyright terms: Public domain W3C validator