MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsval Structured version   Unicode version

Theorem pwsval 13700
Description: Value of a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
pwsval.y  |-  Y  =  ( R  ^s  I )
pwsval.f  |-  F  =  (Scalar `  R )
Assertion
Ref Expression
pwsval  |-  ( ( R  e.  V  /\  I  e.  W )  ->  Y  =  ( F
X_s ( I  X.  { R } ) ) )

Proof of Theorem pwsval
Dummy variables  i 
r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwsval.y . 2  |-  Y  =  ( R  ^s  I )
2 elex 2956 . . 3  |-  ( R  e.  V  ->  R  e.  _V )
3 elex 2956 . . 3  |-  ( I  e.  W  ->  I  e.  _V )
4 simpl 444 . . . . . . 7  |-  ( ( r  =  R  /\  i  =  I )  ->  r  =  R )
54fveq2d 5724 . . . . . 6  |-  ( ( r  =  R  /\  i  =  I )  ->  (Scalar `  r )  =  (Scalar `  R )
)
6 pwsval.f . . . . . 6  |-  F  =  (Scalar `  R )
75, 6syl6eqr 2485 . . . . 5  |-  ( ( r  =  R  /\  i  =  I )  ->  (Scalar `  r )  =  F )
8 id 20 . . . . . 6  |-  ( i  =  I  ->  i  =  I )
9 sneq 3817 . . . . . 6  |-  ( r  =  R  ->  { r }  =  { R } )
10 xpeq12 4889 . . . . . 6  |-  ( ( i  =  I  /\  { r }  =  { R } )  ->  (
i  X.  { r } )  =  ( I  X.  { R } ) )
118, 9, 10syl2anr 465 . . . . 5  |-  ( ( r  =  R  /\  i  =  I )  ->  ( i  X.  {
r } )  =  ( I  X.  { R } ) )
127, 11oveq12d 6091 . . . 4  |-  ( ( r  =  R  /\  i  =  I )  ->  ( (Scalar `  r
) X_s ( i  X.  {
r } ) )  =  ( F X_s (
I  X.  { R } ) ) )
13 df-pws 13665 . . . 4  |-  ^s  =  ( r  e.  _V , 
i  e.  _V  |->  ( (Scalar `  r ) X_s ( i  X.  { r } ) ) )
14 ovex 6098 . . . 4  |-  ( F
X_s ( I  X.  { R } ) )  e. 
_V
1512, 13, 14ovmpt2a 6196 . . 3  |-  ( ( R  e.  _V  /\  I  e.  _V )  ->  ( R  ^s  I )  =  ( F X_s (
I  X.  { R } ) ) )
162, 3, 15syl2an 464 . 2  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( R  ^s  I )  =  ( F X_s (
I  X.  { R } ) ) )
171, 16syl5eq 2479 1  |-  ( ( R  e.  V  /\  I  e.  W )  ->  Y  =  ( F
X_s ( I  X.  { R } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   _Vcvv 2948   {csn 3806    X. cxp 4868   ` cfv 5446  (class class class)co 6073  Scalarcsca 13524   X_scprds 13661    ^s cpws 13662
This theorem is referenced by:  pwsbas  13701  pwsplusgval  13704  pwsmulrval  13705  pwsle  13706  pwsvscafval  13708  pwssca  13710  pwsmnd  14722  pws0g  14723  pwspjmhm  14759  pwsgrp  14921  pwsinvg  14922  pwscmn  15470  pwsabl  15471  pwsgsum  15545  pwsrng  15713  pws1  15714  pwscrng  15715  pwsmgp  15716  pwslmod  16038  pwstps  17654  resspwsds  18394  pwsxms  18554  pwsms  18555  cnpwstotbnd  26497  repwsmet  26534  rrnequiv  26535  frlmpws  27186  frlmlss  27187  frlmpwsfi  27188  frlmbas  27191
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-iota 5410  df-fun 5448  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-pws 13665
  Copyright terms: Public domain W3C validator