Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwtrOLD Unicode version

Theorem pwtrOLD 27972
Description: The power class of a transitive class is transitive. The proof of this theorem was automatically generated from pwtrVD 27971 using a tools command file, translateMWO.cmd , by translating the proof into its non-virtual deduction form and minimizing it. (Contributed by Alan Sare, 25-Aug-2011.) (Moved into main set.mm as pwtr 4226 and may be deleted by mathbox owner, AS. --NM 15-Jun-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
pwtrOLD  |-  ( Tr  A  ->  Tr  ~P A
)

Proof of Theorem pwtrOLD
Dummy variables  z 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 447 . . . . . . . 8  |-  ( ( z  e.  y  /\  y  e.  ~P A
)  ->  y  e.  ~P A )
21a1i 10 . . . . . . 7  |-  ( Tr  A  ->  ( (
z  e.  y  /\  y  e.  ~P A
)  ->  y  e.  ~P A ) )
3 elpwi 3633 . . . . . . 7  |-  ( y  e.  ~P A  -> 
y  C_  A )
42, 3syl6 29 . . . . . 6  |-  ( Tr  A  ->  ( (
z  e.  y  /\  y  e.  ~P A
)  ->  y  C_  A ) )
5 simpl 443 . . . . . . 7  |-  ( ( z  e.  y  /\  y  e.  ~P A
)  ->  z  e.  y )
65a1i 10 . . . . . 6  |-  ( Tr  A  ->  ( (
z  e.  y  /\  y  e.  ~P A
)  ->  z  e.  y ) )
7 ssel 3174 . . . . . 6  |-  ( y 
C_  A  ->  (
z  e.  y  -> 
z  e.  A ) )
84, 6, 7ee22 1352 . . . . 5  |-  ( Tr  A  ->  ( (
z  e.  y  /\  y  e.  ~P A
)  ->  z  e.  A ) )
9 trss 4122 . . . . 5  |-  ( Tr  A  ->  ( z  e.  A  ->  z  C_  A ) )
108, 9syld 40 . . . 4  |-  ( Tr  A  ->  ( (
z  e.  y  /\  y  e.  ~P A
)  ->  z  C_  A ) )
11 vex 2791 . . . . 5  |-  z  e. 
_V
1211elpw 3631 . . . 4  |-  ( z  e.  ~P A  <->  z  C_  A )
1310, 12syl6ibr 218 . . 3  |-  ( Tr  A  ->  ( (
z  e.  y  /\  y  e.  ~P A
)  ->  z  e.  ~P A ) )
1413alrimivv 1618 . 2  |-  ( Tr  A  ->  A. z A. y ( ( z  e.  y  /\  y  e.  ~P A )  -> 
z  e.  ~P A
) )
15 dftr2 4115 . 2  |-  ( Tr 
~P A  <->  A. z A. y ( ( z  e.  y  /\  y  e.  ~P A )  -> 
z  e.  ~P A
) )
1614, 15sylibr 203 1  |-  ( Tr  A  ->  Tr  ~P A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   A.wal 1527    e. wcel 1684    C_ wss 3152   ~Pcpw 3625   Tr wtr 4113
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-v 2790  df-in 3159  df-ss 3166  df-pw 3627  df-uni 3828  df-tr 4114
  Copyright terms: Public domain W3C validator