MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwxpndom2 Structured version   Unicode version

Theorem pwxpndom2 8542
Description: The powerset of a Dedekind-infinite set does not inject into its cross product with itself. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
pwxpndom2  |-  ( om  ~<_  A  ->  -.  ~P A  ~<_  ( A  +c  ( A  X.  A ) ) )

Proof of Theorem pwxpndom2
Dummy variables  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwfseq 8541 . 2  |-  ( om  ~<_  A  ->  -.  ~P A  ~<_  U_ n  e.  om  ( A  ^m  n ) )
2 reldom 7117 . . . . . . 7  |-  Rel  ~<_
32brrelex2i 4921 . . . . . 6  |-  ( om  ~<_  A  ->  A  e.  _V )
4 oveq1 6090 . . . . . . . 8  |-  ( x  =  A  ->  (
x  ^m  1o )  =  ( A  ^m  1o ) )
5 id 21 . . . . . . . 8  |-  ( x  =  A  ->  x  =  A )
64, 5breq12d 4227 . . . . . . 7  |-  ( x  =  A  ->  (
( x  ^m  1o )  ~~  x  <->  ( A  ^m  1o )  ~~  A
) )
7 df1o2 6738 . . . . . . . . 9  |-  1o  =  { (/) }
87oveq2i 6094 . . . . . . . 8  |-  ( x  ^m  1o )  =  ( x  ^m  { (/)
} )
9 vex 2961 . . . . . . . . 9  |-  x  e. 
_V
10 0ex 4341 . . . . . . . . 9  |-  (/)  e.  _V
119, 10mapsnen 7186 . . . . . . . 8  |-  ( x  ^m  { (/) } ) 
~~  x
128, 11eqbrtri 4233 . . . . . . 7  |-  ( x  ^m  1o )  ~~  x
136, 12vtoclg 3013 . . . . . 6  |-  ( A  e.  _V  ->  ( A  ^m  1o )  ~~  A )
14 ensym 7158 . . . . . 6  |-  ( ( A  ^m  1o ) 
~~  A  ->  A  ~~  ( A  ^m  1o ) )
153, 13, 143syl 19 . . . . 5  |-  ( om  ~<_  A  ->  A  ~~  ( A  ^m  1o ) )
16 map2xp 7279 . . . . . 6  |-  ( A  e.  _V  ->  ( A  ^m  2o )  ~~  ( A  X.  A
) )
17 ensym 7158 . . . . . 6  |-  ( ( A  ^m  2o ) 
~~  ( A  X.  A )  ->  ( A  X.  A )  ~~  ( A  ^m  2o ) )
183, 16, 173syl 19 . . . . 5  |-  ( om  ~<_  A  ->  ( A  X.  A )  ~~  ( A  ^m  2o ) )
19 elmapi 7040 . . . . . . . . . . 11  |-  ( x  e.  ( A  ^m  1o )  ->  x : 1o --> A )
20 fdm 5597 . . . . . . . . . . 11  |-  ( x : 1o --> A  ->  dom  x  =  1o )
2119, 20syl 16 . . . . . . . . . 10  |-  ( x  e.  ( A  ^m  1o )  ->  dom  x  =  1o )
2221adantr 453 . . . . . . . . 9  |-  ( ( x  e.  ( A  ^m  1o )  /\  x  e.  ( A  ^m  2o ) )  ->  dom  x  =  1o )
23 1onn 6884 . . . . . . . . . . . . . 14  |-  1o  e.  om
2423elexi 2967 . . . . . . . . . . . . 13  |-  1o  e.  _V
2524sucid 4662 . . . . . . . . . . . 12  |-  1o  e.  suc  1o
26 df-2o 6727 . . . . . . . . . . . 12  |-  2o  =  suc  1o
2725, 26eleqtrri 2511 . . . . . . . . . . 11  |-  1o  e.  2o
28 1on 6733 . . . . . . . . . . . 12  |-  1o  e.  On
2928onirri 4690 . . . . . . . . . . 11  |-  -.  1o  e.  1o
30 nelneq2 2537 . . . . . . . . . . 11  |-  ( ( 1o  e.  2o  /\  -.  1o  e.  1o )  ->  -.  2o  =  1o )
3127, 29, 30mp2an 655 . . . . . . . . . 10  |-  -.  2o  =  1o
32 elmapi 7040 . . . . . . . . . . . . 13  |-  ( x  e.  ( A  ^m  2o )  ->  x : 2o --> A )
33 fdm 5597 . . . . . . . . . . . . 13  |-  ( x : 2o --> A  ->  dom  x  =  2o )
3432, 33syl 16 . . . . . . . . . . . 12  |-  ( x  e.  ( A  ^m  2o )  ->  dom  x  =  2o )
3534adantl 454 . . . . . . . . . . 11  |-  ( ( x  e.  ( A  ^m  1o )  /\  x  e.  ( A  ^m  2o ) )  ->  dom  x  =  2o )
3635eqeq1d 2446 . . . . . . . . . 10  |-  ( ( x  e.  ( A  ^m  1o )  /\  x  e.  ( A  ^m  2o ) )  -> 
( dom  x  =  1o 
<->  2o  =  1o ) )
3731, 36mtbiri 296 . . . . . . . . 9  |-  ( ( x  e.  ( A  ^m  1o )  /\  x  e.  ( A  ^m  2o ) )  ->  -.  dom  x  =  1o )
3822, 37pm2.65i 168 . . . . . . . 8  |-  -.  (
x  e.  ( A  ^m  1o )  /\  x  e.  ( A  ^m  2o ) )
39 elin 3532 . . . . . . . 8  |-  ( x  e.  ( ( A  ^m  1o )  i^i  ( A  ^m  2o ) )  <->  ( x  e.  ( A  ^m  1o )  /\  x  e.  ( A  ^m  2o ) ) )
4038, 39mtbir 292 . . . . . . 7  |-  -.  x  e.  ( ( A  ^m  1o )  i^i  ( A  ^m  2o ) )
4140a1i 11 . . . . . 6  |-  ( om  ~<_  A  ->  -.  x  e.  ( ( A  ^m  1o )  i^i  ( A  ^m  2o ) ) )
4241eq0rdv 3664 . . . . 5  |-  ( om  ~<_  A  ->  ( ( A  ^m  1o )  i^i  ( A  ^m  2o ) )  =  (/) )
43 cdaenun 8056 . . . . 5  |-  ( ( A  ~~  ( A  ^m  1o )  /\  ( A  X.  A
)  ~~  ( A  ^m  2o )  /\  (
( A  ^m  1o )  i^i  ( A  ^m  2o ) )  =  (/) )  ->  ( A  +c  ( A  X.  A
) )  ~~  (
( A  ^m  1o )  u.  ( A  ^m  2o ) ) )
4415, 18, 42, 43syl3anc 1185 . . . 4  |-  ( om  ~<_  A  ->  ( A  +c  ( A  X.  A
) )  ~~  (
( A  ^m  1o )  u.  ( A  ^m  2o ) ) )
45 omex 7600 . . . . . 6  |-  om  e.  _V
46 ovex 6108 . . . . . 6  |-  ( A  ^m  n )  e. 
_V
4745, 46iunex 5993 . . . . 5  |-  U_ n  e.  om  ( A  ^m  n )  e.  _V
48 oveq2 6091 . . . . . . . 8  |-  ( n  =  1o  ->  ( A  ^m  n )  =  ( A  ^m  1o ) )
4948ssiun2s 4137 . . . . . . 7  |-  ( 1o  e.  om  ->  ( A  ^m  1o )  C_  U_ n  e.  om  ( A  ^m  n ) )
5023, 49ax-mp 8 . . . . . 6  |-  ( A  ^m  1o )  C_  U_ n  e.  om  ( A  ^m  n )
51 2onn 6885 . . . . . . 7  |-  2o  e.  om
52 oveq2 6091 . . . . . . . 8  |-  ( n  =  2o  ->  ( A  ^m  n )  =  ( A  ^m  2o ) )
5352ssiun2s 4137 . . . . . . 7  |-  ( 2o  e.  om  ->  ( A  ^m  2o )  C_  U_ n  e.  om  ( A  ^m  n ) )
5451, 53ax-mp 8 . . . . . 6  |-  ( A  ^m  2o )  C_  U_ n  e.  om  ( A  ^m  n )
5550, 54unssi 3524 . . . . 5  |-  ( ( A  ^m  1o )  u.  ( A  ^m  2o ) )  C_  U_ n  e.  om  ( A  ^m  n )
56 ssdomg 7155 . . . . 5  |-  ( U_ n  e.  om  ( A  ^m  n )  e. 
_V  ->  ( ( ( A  ^m  1o )  u.  ( A  ^m  2o ) )  C_  U_ n  e.  om  ( A  ^m  n )  ->  (
( A  ^m  1o )  u.  ( A  ^m  2o ) )  ~<_  U_ n  e.  om  ( A  ^m  n ) ) )
5747, 55, 56mp2 9 . . . 4  |-  ( ( A  ^m  1o )  u.  ( A  ^m  2o ) )  ~<_  U_ n  e.  om  ( A  ^m  n )
58 endomtr 7167 . . . 4  |-  ( ( ( A  +c  ( A  X.  A ) ) 
~~  ( ( A  ^m  1o )  u.  ( A  ^m  2o ) )  /\  (
( A  ^m  1o )  u.  ( A  ^m  2o ) )  ~<_  U_ n  e.  om  ( A  ^m  n ) )  ->  ( A  +c  ( A  X.  A
) )  ~<_  U_ n  e.  om  ( A  ^m  n ) )
5944, 57, 58sylancl 645 . . 3  |-  ( om  ~<_  A  ->  ( A  +c  ( A  X.  A
) )  ~<_  U_ n  e.  om  ( A  ^m  n ) )
60 domtr 7162 . . . 4  |-  ( ( ~P A  ~<_  ( A  +c  ( A  X.  A ) )  /\  ( A  +c  ( A  X.  A ) )  ~<_ 
U_ n  e.  om  ( A  ^m  n
) )  ->  ~P A  ~<_  U_ n  e.  om  ( A  ^m  n
) )
6160expcom 426 . . 3  |-  ( ( A  +c  ( A  X.  A ) )  ~<_ 
U_ n  e.  om  ( A  ^m  n
)  ->  ( ~P A  ~<_  ( A  +c  ( A  X.  A
) )  ->  ~P A  ~<_  U_ n  e.  om  ( A  ^m  n
) ) )
6259, 61syl 16 . 2  |-  ( om  ~<_  A  ->  ( ~P A  ~<_  ( A  +c  ( A  X.  A
) )  ->  ~P A  ~<_  U_ n  e.  om  ( A  ^m  n
) ) )
631, 62mtod 171 1  |-  ( om  ~<_  A  ->  -.  ~P A  ~<_  ( A  +c  ( A  X.  A ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726   _Vcvv 2958    u. cun 3320    i^i cin 3321    C_ wss 3322   (/)c0 3630   ~Pcpw 3801   {csn 3816   U_ciun 4095   class class class wbr 4214   suc csuc 4585   omcom 4847    X. cxp 4878   dom cdm 4880   -->wf 5452  (class class class)co 6083   1oc1o 6719   2oc2o 6720    ^m cmap 7020    ~~ cen 7108    ~<_ cdom 7109    +c ccda 8049
This theorem is referenced by:  pwxpndom  8543  pwcdandom  8544
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-inf2 7598
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-se 4544  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-isom 5465  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-seqom 6707  df-1o 6726  df-2o 6727  df-oadd 6730  df-omul 6731  df-oexp 6732  df-er 6907  df-map 7022  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-oi 7481  df-har 7528  df-cnf 7619  df-card 7828  df-cda 8050
  Copyright terms: Public domain W3C validator