MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythagtriplem13 Unicode version

Theorem pythagtriplem13 12880
Description: Lemma for pythagtrip 12887. Show that  N (which will eventually be closely related to the  n in the final statement) is a natural. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypothesis
Ref Expression
pythagtriplem13.1  |-  N  =  ( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 )
Assertion
Ref Expression
pythagtriplem13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  N  e.  NN )

Proof of Theorem pythagtriplem13
StepHypRef Expression
1 pythagtriplem13.1 . 2  |-  N  =  ( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 )
2 pythagtriplem9 12877 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( sqr `  ( C  +  B ) )  e.  NN )
32nnzd 10116 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( sqr `  ( C  +  B ) )  e.  ZZ )
4 simp3r 984 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  -.  2  ||  A )
5 simp3 957 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  C  e.  NN )
6 simp2 956 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  B  e.  NN )
75, 6nnaddcld 9792 . . . . . . . . . . . 12  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( C  +  B )  e.  NN )
87nnzd 10116 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( C  +  B )  e.  ZZ )
983ad2ant1 976 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  +  B )  e.  ZZ )
10 nnz 10045 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  A  e.  ZZ )
11103ad2ant1 976 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  A  e.  ZZ )
12113ad2ant1 976 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  A  e.  ZZ )
13 2z 10054 . . . . . . . . . . 11  |-  2  e.  ZZ
14 dvdsgcdb 12723 . . . . . . . . . . 11  |-  ( ( 2  e.  ZZ  /\  ( C  +  B
)  e.  ZZ  /\  A  e.  ZZ )  ->  ( ( 2  ||  ( C  +  B
)  /\  2  ||  A )  <->  2  ||  ( ( C  +  B )  gcd  A
) ) )
1513, 14mp3an1 1264 . . . . . . . . . 10  |-  ( ( ( C  +  B
)  e.  ZZ  /\  A  e.  ZZ )  ->  ( ( 2  ||  ( C  +  B
)  /\  2  ||  A )  <->  2  ||  ( ( C  +  B )  gcd  A
) ) )
169, 12, 15syl2anc 642 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( 2  ||  ( C  +  B )  /\  2  ||  A )  <->  2  ||  ( ( C  +  B )  gcd  A ) ) )
1716biimpar 471 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  2  ||  ( ( C  +  B )  gcd  A
) )  ->  (
2  ||  ( C  +  B )  /\  2  ||  A ) )
1817simprd 449 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  2  ||  ( ( C  +  B )  gcd  A
) )  ->  2  ||  A )
194, 18mtand 640 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  -.  2  ||  ( ( C  +  B )  gcd 
A ) )
20 pythagtriplem7 12875 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( sqr `  ( C  +  B ) )  =  ( ( C  +  B )  gcd  A
) )
2120breq2d 4035 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
2  ||  ( sqr `  ( C  +  B
) )  <->  2  ||  ( ( C  +  B )  gcd  A
) ) )
2219, 21mtbird 292 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  -.  2  ||  ( sqr `  ( C  +  B )
) )
23 pythagtriplem8 12876 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( sqr `  ( C  -  B ) )  e.  NN )
2423nnzd 10116 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( sqr `  ( C  -  B ) )  e.  ZZ )
25 nnz 10045 . . . . . . . . . . . . 13  |-  ( C  e.  NN  ->  C  e.  ZZ )
26253ad2ant3 978 . . . . . . . . . . . 12  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  C  e.  ZZ )
27 nnz 10045 . . . . . . . . . . . . 13  |-  ( B  e.  NN  ->  B  e.  ZZ )
28273ad2ant2 977 . . . . . . . . . . . 12  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  B  e.  ZZ )
2926, 28zsubcld 10122 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( C  -  B )  e.  ZZ )
30293ad2ant1 976 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  -  B )  e.  ZZ )
31 dvdsgcdb 12723 . . . . . . . . . . 11  |-  ( ( 2  e.  ZZ  /\  ( C  -  B
)  e.  ZZ  /\  A  e.  ZZ )  ->  ( ( 2  ||  ( C  -  B
)  /\  2  ||  A )  <->  2  ||  ( ( C  -  B )  gcd  A
) ) )
3213, 31mp3an1 1264 . . . . . . . . . 10  |-  ( ( ( C  -  B
)  e.  ZZ  /\  A  e.  ZZ )  ->  ( ( 2  ||  ( C  -  B
)  /\  2  ||  A )  <->  2  ||  ( ( C  -  B )  gcd  A
) ) )
3330, 12, 32syl2anc 642 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( 2  ||  ( C  -  B )  /\  2  ||  A )  <->  2  ||  ( ( C  -  B )  gcd  A ) ) )
3433biimpar 471 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  2  ||  ( ( C  -  B )  gcd  A
) )  ->  (
2  ||  ( C  -  B )  /\  2  ||  A ) )
3534simprd 449 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  /\  (
( A  gcd  B
)  =  1  /\ 
-.  2  ||  A
) )  /\  2  ||  ( ( C  -  B )  gcd  A
) )  ->  2  ||  A )
364, 35mtand 640 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  -.  2  ||  ( ( C  -  B )  gcd 
A ) )
37 pythagtriplem6 12874 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( sqr `  ( C  -  B ) )  =  ( ( C  -  B )  gcd  A
) )
3837breq2d 4035 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
2  ||  ( sqr `  ( C  -  B
) )  <->  2  ||  ( ( C  -  B )  gcd  A
) ) )
3936, 38mtbird 292 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  -.  2  ||  ( sqr `  ( C  -  B )
) )
40 omoe 12865 . . . . 5  |-  ( ( ( ( sqr `  ( C  +  B )
)  e.  ZZ  /\  -.  2  ||  ( sqr `  ( C  +  B
) ) )  /\  ( ( sqr `  ( C  -  B )
)  e.  ZZ  /\  -.  2  ||  ( sqr `  ( C  -  B
) ) ) )  ->  2  ||  (
( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) )
413, 22, 24, 39, 40syl22anc 1183 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  2  ||  ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) )
4229zred 10117 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( C  -  B )  e.  RR )
43423ad2ant1 976 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  -  B )  e.  RR )
44 simp13 987 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  C  e.  NN )
4544nnred 9761 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  C  e.  RR )
467nnred 9761 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( C  +  B )  e.  RR )
47463ad2ant1 976 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  +  B )  e.  RR )
48 nnrp 10363 . . . . . . . . . . . 12  |-  ( B  e.  NN  ->  B  e.  RR+ )
49483ad2ant2 977 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  B  e.  RR+ )
50493ad2ant1 976 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  B  e.  RR+ )
5145, 50ltsubrpd 10418 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  -  B )  <  C )
52 nngt0 9775 . . . . . . . . . . . 12  |-  ( B  e.  NN  ->  0  <  B )
53523ad2ant2 977 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <  B )
54533ad2ant1 976 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  0  <  B )
55 simp12 986 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  B  e.  NN )
5655nnred 9761 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  B  e.  RR )
5756, 45ltaddposd 9356 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
0  <  B  <->  C  <  ( C  +  B ) ) )
5854, 57mpbid 201 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  C  <  ( C  +  B
) )
5943, 45, 47, 51, 58lttrd 8977 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  -  B )  <  ( C  +  B
) )
60 pythagtriplem10 12873 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  0  <  ( C  -  B )
)
61603adant3 975 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  0  <  ( C  -  B
) )
62 0re 8838 . . . . . . . . . . 11  |-  0  e.  RR
63 ltle 8910 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  ( C  -  B
)  e.  RR )  ->  ( 0  < 
( C  -  B
)  ->  0  <_  ( C  -  B ) ) )
6462, 63mpan 651 . . . . . . . . . 10  |-  ( ( C  -  B )  e.  RR  ->  (
0  <  ( C  -  B )  ->  0  <_  ( C  -  B
) ) )
6543, 61, 64sylc 56 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  0  <_  ( C  -  B
) )
66 nngt0 9775 . . . . . . . . . . . . 13  |-  ( C  e.  NN  ->  0  <  C )
67663ad2ant3 978 . . . . . . . . . . . 12  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <  C )
68673ad2ant1 976 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  0  <  C )
6945, 56, 68, 54addgt0d 9347 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  0  <  ( C  +  B
) )
70 ltle 8910 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  ( C  +  B
)  e.  RR )  ->  ( 0  < 
( C  +  B
)  ->  0  <_  ( C  +  B ) ) )
7162, 70mpan 651 . . . . . . . . . 10  |-  ( ( C  +  B )  e.  RR  ->  (
0  <  ( C  +  B )  ->  0  <_  ( C  +  B
) ) )
7247, 69, 71sylc 56 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  0  <_  ( C  +  B
) )
7343, 65, 47, 72sqrltd 11910 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  <  ( C  +  B )  <->  ( sqr `  ( C  -  B
) )  <  ( sqr `  ( C  +  B ) ) ) )
7459, 73mpbid 201 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( sqr `  ( C  -  B ) )  < 
( sqr `  ( C  +  B )
) )
75 nnsub 9784 . . . . . . . 8  |-  ( ( ( sqr `  ( C  -  B )
)  e.  NN  /\  ( sqr `  ( C  +  B ) )  e.  NN )  -> 
( ( sqr `  ( C  -  B )
)  <  ( sqr `  ( C  +  B
) )  <->  ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B ) ) )  e.  NN ) )
7623, 2, 75syl2anc 642 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( sqr `  ( C  -  B )
)  <  ( sqr `  ( C  +  B
) )  <->  ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B ) ) )  e.  NN ) )
7774, 76mpbid 201 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  e.  NN )
7877nnzd 10116 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  e.  ZZ )
79 2ne0 9829 . . . . . 6  |-  2  =/=  0
80 dvdsval2 12534 . . . . . 6  |-  ( ( 2  e.  ZZ  /\  2  =/=  0  /\  (
( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  e.  ZZ )  ->  (
2  ||  ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B ) ) )  <->  ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
)  e.  ZZ ) )
8113, 79, 80mp3an12 1267 . . . . 5  |-  ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  e.  ZZ  ->  ( 2 
||  ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  <-> 
( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 )  e.  ZZ ) )
8278, 81syl 15 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
2  ||  ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B ) ) )  <->  ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
)  e.  ZZ ) )
8341, 82mpbid 201 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 )  e.  ZZ )
8477nngt0d 9789 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  0  <  ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) )
8577nnred 9761 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  e.  RR )
86 halfpos2 9941 . . . . 5  |-  ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  e.  RR  ->  ( 0  <  ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  <->  0  <  ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ) )
8785, 86syl 15 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
0  <  ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B ) ) )  <->  0  <  (
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ) )
8884, 87mpbid 201 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  0  <  ( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 ) )
89 elnnz 10034 . . 3  |-  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 )  e.  NN  <->  ( ( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 )  e.  ZZ  /\  0  < 
( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 ) ) )
9083, 88, 89sylanbrc 645 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 )  e.  NN )
911, 90syl5eqel 2367 1  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  N  e.  NN )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    < clt 8867    <_ cle 8868    - cmin 9037    / cdiv 9423   NNcn 9746   2c2 9795   ZZcz 10024   RR+crp 10354   ^cexp 11104   sqrcsqr 11718    || cdivides 12531    gcd cgcd 12685
This theorem is referenced by:  pythagtriplem18  12885
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fz 10783  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-dvds 12532  df-gcd 12686  df-prm 12759
  Copyright terms: Public domain W3C validator