MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythagtriplem14 Unicode version

Theorem pythagtriplem14 12897
Description: Lemma for pythagtrip 12903. Calculate the square of  N. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypothesis
Ref Expression
pythagtriplem13.1  |-  N  =  ( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 )
Assertion
Ref Expression
pythagtriplem14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( N ^ 2 )  =  ( ( C  -  A )  /  2
) )

Proof of Theorem pythagtriplem14
StepHypRef Expression
1 pythagtriplem13.1 . . 3  |-  N  =  ( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 )
21oveq1i 5884 . 2  |-  ( N ^ 2 )  =  ( ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
) ^ 2 )
3 nncn 9770 . . . . . . . . 9  |-  ( C  e.  NN  ->  C  e.  CC )
4 nncn 9770 . . . . . . . . 9  |-  ( B  e.  NN  ->  B  e.  CC )
5 addcl 8835 . . . . . . . . 9  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( C  +  B
)  e.  CC )
63, 4, 5syl2anr 464 . . . . . . . 8  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( C  +  B
)  e.  CC )
76sqrcld 11935 . . . . . . 7  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( sqr `  ( C  +  B )
)  e.  CC )
8 subcl 9067 . . . . . . . . 9  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( C  -  B
)  e.  CC )
93, 4, 8syl2anr 464 . . . . . . . 8  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( C  -  B
)  e.  CC )
109sqrcld 11935 . . . . . . 7  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( sqr `  ( C  -  B )
)  e.  CC )
117, 10subcld 9173 . . . . . 6  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  e.  CC )
12113adant1 973 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  e.  CC )
13123ad2ant1 976 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  e.  CC )
14 2cn 9832 . . . . 5  |-  2  e.  CC
15 2ne0 9845 . . . . 5  |-  2  =/=  0
16 sqdiv 11185 . . . . 5  |-  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 ) ^
2 )  =  ( ( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) ) ^ 2 )  / 
( 2 ^ 2 ) ) )
1714, 15, 16mp3an23 1269 . . . 4  |-  ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  e.  CC  ->  ( (
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 )  =  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) ^
2 )  /  (
2 ^ 2 ) ) )
1813, 17syl 15 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 ) ^
2 )  =  ( ( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) ) ^ 2 )  / 
( 2 ^ 2 ) ) )
1914sqvali 11199 . . . . 5  |-  ( 2 ^ 2 )  =  ( 2  x.  2 )
2019oveq2i 5885 . . . 4  |-  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) ^
2 )  /  (
2 ^ 2 ) )  =  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) ^
2 )  /  (
2  x.  2 ) )
2113sqcld 11259 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) ^
2 )  e.  CC )
2214, 15pm3.2i 441 . . . . . . 7  |-  ( 2  e.  CC  /\  2  =/=  0 )
23 divdiv1 9487 . . . . . . 7  |-  ( ( ( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) ) ^ 2 )  e.  CC  /\  ( 2  e.  CC  /\  2  =/=  0 )  /\  (
2  e.  CC  /\  2  =/=  0 ) )  ->  ( ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) ^
2 )  /  2
)  /  2 )  =  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) ^
2 )  /  (
2  x.  2 ) ) )
2422, 22, 23mp3an23 1269 . . . . . 6  |-  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) ^
2 )  e.  CC  ->  ( ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) ^
2 )  /  2
)  /  2 )  =  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) ^
2 )  /  (
2  x.  2 ) ) )
2521, 24syl 15 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) ) ^ 2 )  /  2 )  /  2 )  =  ( ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) ) ^ 2 )  /  ( 2  x.  2 ) ) )
26 simp12 986 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  B  e.  NN )
27 simp13 987 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  C  e.  NN )
2826, 27, 7syl2anc 642 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( sqr `  ( C  +  B ) )  e.  CC )
2926, 27, 10syl2anc 642 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( sqr `  ( C  -  B ) )  e.  CC )
30 binom2sub 11236 . . . . . . . . . 10  |-  ( ( ( sqr `  ( C  +  B )
)  e.  CC  /\  ( sqr `  ( C  -  B ) )  e.  CC )  -> 
( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) ) ^ 2 )  =  ( ( ( ( sqr `  ( C  +  B ) ) ^ 2 )  -  ( 2  x.  (
( sqr `  ( C  +  B )
)  x.  ( sqr `  ( C  -  B
) ) ) ) )  +  ( ( sqr `  ( C  -  B ) ) ^ 2 ) ) )
3128, 29, 30syl2anc 642 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) ^
2 )  =  ( ( ( ( sqr `  ( C  +  B
) ) ^ 2 )  -  ( 2  x.  ( ( sqr `  ( C  +  B
) )  x.  ( sqr `  ( C  -  B ) ) ) ) )  +  ( ( sqr `  ( C  -  B )
) ^ 2 ) ) )
32 nnre 9769 . . . . . . . . . . . . . . 15  |-  ( C  e.  NN  ->  C  e.  RR )
33 nnre 9769 . . . . . . . . . . . . . . 15  |-  ( B  e.  NN  ->  B  e.  RR )
34 readdcl 8836 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( C  +  B
)  e.  RR )
3532, 33, 34syl2anr 464 . . . . . . . . . . . . . 14  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( C  +  B
)  e.  RR )
36353adant1 973 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( C  +  B )  e.  RR )
37363ad2ant1 976 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  +  B )  e.  RR )
3837recnd 8877 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  +  B )  e.  CC )
39 resubcl 9127 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( C  -  B
)  e.  RR )
4032, 33, 39syl2anr 464 . . . . . . . . . . . . . 14  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( C  -  B
)  e.  RR )
41403adant1 973 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( C  -  B )  e.  RR )
42413ad2ant1 976 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  -  B )  e.  RR )
4342recnd 8877 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  -  B )  e.  CC )
4473adant1 973 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( sqr `  ( C  +  B ) )  e.  CC )
45103adant1 973 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( sqr `  ( C  -  B ) )  e.  CC )
4644, 45mulcld 8871 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( sqr `  ( C  +  B )
)  x.  ( sqr `  ( C  -  B
) ) )  e.  CC )
47 mulcl 8837 . . . . . . . . . . . . 13  |-  ( ( 2  e.  CC  /\  ( ( sqr `  ( C  +  B )
)  x.  ( sqr `  ( C  -  B
) ) )  e.  CC )  ->  (
2  x.  ( ( sqr `  ( C  +  B ) )  x.  ( sqr `  ( C  -  B )
) ) )  e.  CC )
4814, 46, 47sylancr 644 . . . . . . . . . . . 12  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
2  x.  ( ( sqr `  ( C  +  B ) )  x.  ( sqr `  ( C  -  B )
) ) )  e.  CC )
49483ad2ant1 976 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
2  x.  ( ( sqr `  ( C  +  B ) )  x.  ( sqr `  ( C  -  B )
) ) )  e.  CC )
5038, 43, 49addsubd 9194 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( C  +  B )  +  ( C  -  B ) )  -  ( 2  x.  ( ( sqr `  ( C  +  B
) )  x.  ( sqr `  ( C  -  B ) ) ) ) )  =  ( ( ( C  +  B )  -  (
2  x.  ( ( sqr `  ( C  +  B ) )  x.  ( sqr `  ( C  -  B )
) ) ) )  +  ( C  -  B ) ) )
5127nncnd 9778 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  C  e.  CC )
52 simp11 985 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  A  e.  NN )
5352nncnd 9778 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  A  e.  CC )
54 subdi 9229 . . . . . . . . . . . . 13  |-  ( ( 2  e.  CC  /\  C  e.  CC  /\  A  e.  CC )  ->  (
2  x.  ( C  -  A ) )  =  ( ( 2  x.  C )  -  ( 2  x.  A
) ) )
5514, 54mp3an1 1264 . . . . . . . . . . . 12  |-  ( ( C  e.  CC  /\  A  e.  CC )  ->  ( 2  x.  ( C  -  A )
)  =  ( ( 2  x.  C )  -  ( 2  x.  A ) ) )
5651, 53, 55syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
2  x.  ( C  -  A ) )  =  ( ( 2  x.  C )  -  ( 2  x.  A
) ) )
57 ppncan 9105 . . . . . . . . . . . . . . . . 17  |-  ( ( C  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( C  +  B
)  +  ( C  -  B ) )  =  ( C  +  C ) )
58573anidm13 1240 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C  +  B )  +  ( C  -  B ) )  =  ( C  +  C ) )
59 2times 9859 . . . . . . . . . . . . . . . . 17  |-  ( C  e.  CC  ->  (
2  x.  C )  =  ( C  +  C ) )
6059adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  C
)  =  ( C  +  C ) )
6158, 60eqtr4d 2331 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C  +  B )  +  ( C  -  B ) )  =  ( 2  x.  C ) )
623, 4, 61syl2anr 464 . . . . . . . . . . . . . 14  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( ( C  +  B )  +  ( C  -  B ) )  =  ( 2  x.  C ) )
63623adant1 973 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( C  +  B
)  +  ( C  -  B ) )  =  ( 2  x.  C ) )
64633ad2ant1 976 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  +  B
)  +  ( C  -  B ) )  =  ( 2  x.  C ) )
6526nncnd 9778 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  B  e.  CC )
66 subsq 11226 . . . . . . . . . . . . . . . . . 18  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C ^
2 )  -  ( B ^ 2 ) )  =  ( ( C  +  B )  x.  ( C  -  B
) ) )
6751, 65, 66syl2anc 642 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C ^ 2 )  -  ( B ^ 2 ) )  =  ( ( C  +  B )  x.  ( C  -  B
) ) )
68 oveq1 5881 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  -  ( B ^ 2 ) )  =  ( ( C ^ 2 )  -  ( B ^ 2 ) ) )
69683ad2ant2 977 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  -  ( B ^ 2 ) )  =  ( ( C ^ 2 )  -  ( B ^ 2 ) ) )
70 nncn 9770 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A  e.  NN  ->  A  e.  CC )
7170sqcld 11259 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A  e.  NN  ->  ( A ^ 2 )  e.  CC )
72713ad2ant1 976 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A ^ 2 )  e.  CC )
734sqcld 11259 . . . . . . . . . . . . . . . . . . . . 21  |-  ( B  e.  NN  ->  ( B ^ 2 )  e.  CC )
74733ad2ant2 977 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( B ^ 2 )  e.  CC )
7572, 74pncand 9174 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  -  ( B ^ 2 ) )  =  ( A ^
2 ) )
76753ad2ant1 976 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  -  ( B ^ 2 ) )  =  ( A ^
2 ) )
7769, 76eqtr3d 2330 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C ^ 2 )  -  ( B ^ 2 ) )  =  ( A ^
2 ) )
7867, 77eqtr3d 2330 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  +  B
)  x.  ( C  -  B ) )  =  ( A ^
2 ) )
7978fveq2d 5545 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( sqr `  ( ( C  +  B )  x.  ( C  -  B
) ) )  =  ( sqr `  ( A ^ 2 ) ) )
8032adantl 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  C  e.  RR )
8133adantr 451 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  B  e.  RR )
82 nngt0 9791 . . . . . . . . . . . . . . . . . . . . 21  |-  ( C  e.  NN  ->  0  <  C )
8382adantl 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  0  <  C )
84 nngt0 9791 . . . . . . . . . . . . . . . . . . . . 21  |-  ( B  e.  NN  ->  0  <  B )
8584adantr 451 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  0  <  B )
8680, 81, 83, 85addgt0d 9363 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  0  <  ( C  +  B ) )
87 0re 8854 . . . . . . . . . . . . . . . . . . . 20  |-  0  e.  RR
88 ltle 8926 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 0  e.  RR  /\  ( C  +  B
)  e.  RR )  ->  ( 0  < 
( C  +  B
)  ->  0  <_  ( C  +  B ) ) )
8987, 88mpan 651 . . . . . . . . . . . . . . . . . . 19  |-  ( ( C  +  B )  e.  RR  ->  (
0  <  ( C  +  B )  ->  0  <_  ( C  +  B
) ) )
9035, 86, 89sylc 56 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  0  <_  ( C  +  B ) )
91903adant1 973 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <_  ( C  +  B
) )
92913ad2ant1 976 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  0  <_  ( C  +  B
) )
93 pythagtriplem10 12889 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  0  <  ( C  -  B )
)
94933adant3 975 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  0  <  ( C  -  B
) )
95 ltle 8926 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  RR  /\  ( C  -  B
)  e.  RR )  ->  ( 0  < 
( C  -  B
)  ->  0  <_  ( C  -  B ) ) )
9687, 95mpan 651 . . . . . . . . . . . . . . . . 17  |-  ( ( C  -  B )  e.  RR  ->  (
0  <  ( C  -  B )  ->  0  <_  ( C  -  B
) ) )
9742, 94, 96sylc 56 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  0  <_  ( C  -  B
) )
9837, 92, 42, 97sqrmuld 11923 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( sqr `  ( ( C  +  B )  x.  ( C  -  B
) ) )  =  ( ( sqr `  ( C  +  B )
)  x.  ( sqr `  ( C  -  B
) ) ) )
9979, 98eqtr3d 2330 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( sqr `  ( A ^
2 ) )  =  ( ( sqr `  ( C  +  B )
)  x.  ( sqr `  ( C  -  B
) ) ) )
100 nnre 9769 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  NN  ->  A  e.  RR )
1011003ad2ant1 976 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  A  e.  RR )
1021013ad2ant1 976 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  A  e.  RR )
103 nnnn0 9988 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  NN  ->  A  e.  NN0 )
104103nn0ge0d 10037 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  NN  ->  0  <_  A )
1051043ad2ant1 976 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <_  A )
1061053ad2ant1 976 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  0  <_  A )
107102, 106sqrsqd 11918 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( sqr `  ( A ^
2 ) )  =  A )
10899, 107eqtr3d 2330 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( sqr `  ( C  +  B )
)  x.  ( sqr `  ( C  -  B
) ) )  =  A )
109108oveq2d 5890 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
2  x.  ( ( sqr `  ( C  +  B ) )  x.  ( sqr `  ( C  -  B )
) ) )  =  ( 2  x.  A
) )
11064, 109oveq12d 5892 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( C  +  B )  +  ( C  -  B ) )  -  ( 2  x.  ( ( sqr `  ( C  +  B
) )  x.  ( sqr `  ( C  -  B ) ) ) ) )  =  ( ( 2  x.  C
)  -  ( 2  x.  A ) ) )
11156, 110eqtr4d 2331 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
2  x.  ( C  -  A ) )  =  ( ( ( C  +  B )  +  ( C  -  B ) )  -  ( 2  x.  (
( sqr `  ( C  +  B )
)  x.  ( sqr `  ( C  -  B
) ) ) ) ) )
112 resqrth 11757 . . . . . . . . . . . . 13  |-  ( ( ( C  +  B
)  e.  RR  /\  0  <_  ( C  +  B ) )  -> 
( ( sqr `  ( C  +  B )
) ^ 2 )  =  ( C  +  B ) )
11337, 92, 112syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( sqr `  ( C  +  B )
) ^ 2 )  =  ( C  +  B ) )
114113oveq1d 5889 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( sqr `  ( C  +  B )
) ^ 2 )  -  ( 2  x.  ( ( sqr `  ( C  +  B )
)  x.  ( sqr `  ( C  -  B
) ) ) ) )  =  ( ( C  +  B )  -  ( 2  x.  ( ( sqr `  ( C  +  B )
)  x.  ( sqr `  ( C  -  B
) ) ) ) ) )
115 resqrth 11757 . . . . . . . . . . . 12  |-  ( ( ( C  -  B
)  e.  RR  /\  0  <_  ( C  -  B ) )  -> 
( ( sqr `  ( C  -  B )
) ^ 2 )  =  ( C  -  B ) )
11642, 97, 115syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( sqr `  ( C  -  B )
) ^ 2 )  =  ( C  -  B ) )
117114, 116oveq12d 5892 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( sqr `  ( C  +  B
) ) ^ 2 )  -  ( 2  x.  ( ( sqr `  ( C  +  B
) )  x.  ( sqr `  ( C  -  B ) ) ) ) )  +  ( ( sqr `  ( C  -  B )
) ^ 2 ) )  =  ( ( ( C  +  B
)  -  ( 2  x.  ( ( sqr `  ( C  +  B
) )  x.  ( sqr `  ( C  -  B ) ) ) ) )  +  ( C  -  B ) ) )
11850, 111, 1173eqtr4rd 2339 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( sqr `  ( C  +  B
) ) ^ 2 )  -  ( 2  x.  ( ( sqr `  ( C  +  B
) )  x.  ( sqr `  ( C  -  B ) ) ) ) )  +  ( ( sqr `  ( C  -  B )
) ^ 2 ) )  =  ( 2  x.  ( C  -  A ) ) )
11931, 118eqtrd 2328 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) ^
2 )  =  ( 2  x.  ( C  -  A ) ) )
120119oveq1d 5889 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) ) ^ 2 )  / 
2 )  =  ( ( 2  x.  ( C  -  A )
)  /  2 ) )
121 subcl 9067 . . . . . . . . . . 11  |-  ( ( C  e.  CC  /\  A  e.  CC )  ->  ( C  -  A
)  e.  CC )
1223, 70, 121syl2anr 464 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  C  e.  NN )  ->  ( C  -  A
)  e.  CC )
1231223adant2 974 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( C  -  A )  e.  CC )
1241233ad2ant1 976 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  -  A )  e.  CC )
125 divcan3 9464 . . . . . . . . 9  |-  ( ( ( C  -  A
)  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
( 2  x.  ( C  -  A )
)  /  2 )  =  ( C  -  A ) )
12614, 15, 125mp3an23 1269 . . . . . . . 8  |-  ( ( C  -  A )  e.  CC  ->  (
( 2  x.  ( C  -  A )
)  /  2 )  =  ( C  -  A ) )
127124, 126syl 15 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( 2  x.  ( C  -  A )
)  /  2 )  =  ( C  -  A ) )
128120, 127eqtrd 2328 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) ) ^ 2 )  / 
2 )  =  ( C  -  A ) )
129128oveq1d 5889 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) ) ^ 2 )  /  2 )  /  2 )  =  ( ( C  -  A )  /  2
) )
13025, 129eqtr3d 2330 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) ) ^ 2 )  / 
( 2  x.  2 ) )  =  ( ( C  -  A
)  /  2 ) )
13120, 130syl5eq 2340 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) ) ^ 2 )  / 
( 2 ^ 2 ) )  =  ( ( C  -  A
)  /  2 ) )
13218, 131eqtrd 2328 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 ) ^
2 )  =  ( ( C  -  A
)  /  2 ) )
1332, 132syl5eq 2340 1  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( N ^ 2 )  =  ( ( C  -  A )  /  2
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    < clt 8883    <_ cle 8884    - cmin 9053    / cdiv 9439   NNcn 9762   2c2 9811   ^cexp 11120   sqrcsqr 11734    || cdivides 12547    gcd cgcd 12701
This theorem is referenced by:  pythagtriplem15  12898  pythagtriplem17  12900
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737
  Copyright terms: Public domain W3C validator