MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythagtriplem16 Unicode version

Theorem pythagtriplem16 13131
Description: Lemma for pythagtrip 13135. Show the relationship between  M,  N, and  B. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
pythagtriplem15.1  |-  M  =  ( ( ( sqr `  ( C  +  B
) )  +  ( sqr `  ( C  -  B ) ) )  /  2 )
pythagtriplem15.2  |-  N  =  ( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 )
Assertion
Ref Expression
pythagtriplem16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  B  =  ( 2  x.  ( M  x.  N
) ) )

Proof of Theorem pythagtriplem16
StepHypRef Expression
1 pythagtriplem15.1 . . . . 5  |-  M  =  ( ( ( sqr `  ( C  +  B
) )  +  ( sqr `  ( C  -  B ) ) )  /  2 )
2 pythagtriplem15.2 . . . . 5  |-  N  =  ( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 )
31, 2oveq12i 6032 . . . 4  |-  ( M  x.  N )  =  ( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
)  x.  ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) )
4 nncn 9940 . . . . . . . . . . . 12  |-  ( C  e.  NN  ->  C  e.  CC )
5 nncn 9940 . . . . . . . . . . . 12  |-  ( B  e.  NN  ->  B  e.  CC )
6 addcl 9005 . . . . . . . . . . . 12  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( C  +  B
)  e.  CC )
74, 5, 6syl2anr 465 . . . . . . . . . . 11  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( C  +  B
)  e.  CC )
87sqrcld 12166 . . . . . . . . . 10  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( sqr `  ( C  +  B )
)  e.  CC )
9 subcl 9237 . . . . . . . . . . . 12  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( C  -  B
)  e.  CC )
104, 5, 9syl2anr 465 . . . . . . . . . . 11  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( C  -  B
)  e.  CC )
1110sqrcld 12166 . . . . . . . . . 10  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( sqr `  ( C  -  B )
)  e.  CC )
12 addcl 9005 . . . . . . . . . 10  |-  ( ( ( sqr `  ( C  +  B )
)  e.  CC  /\  ( sqr `  ( C  -  B ) )  e.  CC )  -> 
( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  e.  CC )
138, 11, 12syl2anc 643 . . . . . . . . 9  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  e.  CC )
14133adant1 975 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  e.  CC )
15143ad2ant1 978 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  e.  CC )
16 subcl 9237 . . . . . . . . . 10  |-  ( ( ( sqr `  ( C  +  B )
)  e.  CC  /\  ( sqr `  ( C  -  B ) )  e.  CC )  -> 
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  e.  CC )
178, 11, 16syl2anc 643 . . . . . . . . 9  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  e.  CC )
18173adant1 975 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  e.  CC )
19183ad2ant1 978 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  e.  CC )
20 2cn 10002 . . . . . . . . 9  |-  2  e.  CC
21 2ne0 10015 . . . . . . . . 9  |-  2  =/=  0
2220, 21pm3.2i 442 . . . . . . . 8  |-  ( 2  e.  CC  /\  2  =/=  0 )
23 divmuldiv 9646 . . . . . . . 8  |-  ( ( ( ( ( sqr `  ( C  +  B
) )  +  ( sqr `  ( C  -  B ) ) )  e.  CC  /\  ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  e.  CC )  /\  (
( 2  e.  CC  /\  2  =/=  0 )  /\  ( 2  e.  CC  /\  2  =/=  0 ) ) )  ->  ( ( ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  / 
2 )  x.  (
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) )  =  ( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  x.  (
( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) )  /  ( 2  x.  2 ) ) )
2422, 22, 23mpanr12 667 . . . . . . 7  |-  ( ( ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  e.  CC  /\  ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  e.  CC )  ->  ( ( ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  / 
2 )  x.  (
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) )  =  ( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  x.  (
( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) )  /  ( 2  x.  2 ) ) )
2515, 19, 24syl2anc 643 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( sqr `  ( C  +  B
) )  +  ( sqr `  ( C  -  B ) ) )  /  2 )  x.  ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
) )  =  ( ( ( ( sqr `  ( C  +  B
) )  +  ( sqr `  ( C  -  B ) ) )  x.  ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) ) )  / 
( 2  x.  2 ) ) )
2613, 17mulcld 9041 . . . . . . . . 9  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( ( ( sqr `  ( C  +  B
) )  +  ( sqr `  ( C  -  B ) ) )  x.  ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) ) )  e.  CC )
27263adant1 975 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  x.  ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) )  e.  CC )
28273ad2ant1 978 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  x.  ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) )  e.  CC )
29 divdiv1 9657 . . . . . . . 8  |-  ( ( ( ( ( sqr `  ( C  +  B
) )  +  ( sqr `  ( C  -  B ) ) )  x.  ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) ) )  e.  CC  /\  ( 2  e.  CC  /\  2  =/=  0 )  /\  (
2  e.  CC  /\  2  =/=  0 ) )  ->  ( ( ( ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  x.  ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) )  /  2 )  / 
2 )  =  ( ( ( ( sqr `  ( C  +  B
) )  +  ( sqr `  ( C  -  B ) ) )  x.  ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) ) )  / 
( 2  x.  2 ) ) )
3022, 22, 29mp3an23 1271 . . . . . . 7  |-  ( ( ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  x.  ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) )  e.  CC  ->  (
( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  x.  (
( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) )  /  2 )  / 
2 )  =  ( ( ( ( sqr `  ( C  +  B
) )  +  ( sqr `  ( C  -  B ) ) )  x.  ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) ) )  / 
( 2  x.  2 ) ) )
3128, 30syl 16 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  x.  (
( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) )  /  2 )  / 
2 )  =  ( ( ( ( sqr `  ( C  +  B
) )  +  ( sqr `  ( C  -  B ) ) )  x.  ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) ) )  / 
( 2  x.  2 ) ) )
3225, 31eqtr4d 2422 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( sqr `  ( C  +  B
) )  +  ( sqr `  ( C  -  B ) ) )  /  2 )  x.  ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
) )  =  ( ( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  x.  (
( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) )  /  2 )  / 
2 ) )
33 nnre 9939 . . . . . . . . . . . . 13  |-  ( C  e.  NN  ->  C  e.  RR )
34 nnre 9939 . . . . . . . . . . . . 13  |-  ( B  e.  NN  ->  B  e.  RR )
35 readdcl 9006 . . . . . . . . . . . . 13  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( C  +  B
)  e.  RR )
3633, 34, 35syl2anr 465 . . . . . . . . . . . 12  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( C  +  B
)  e.  RR )
37363adant1 975 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( C  +  B )  e.  RR )
38373ad2ant1 978 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  +  B )  e.  RR )
3933adantl 453 . . . . . . . . . . . . . 14  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  C  e.  RR )
4034adantr 452 . . . . . . . . . . . . . 14  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  B  e.  RR )
41 nngt0 9961 . . . . . . . . . . . . . . 15  |-  ( C  e.  NN  ->  0  <  C )
4241adantl 453 . . . . . . . . . . . . . 14  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  0  <  C )
43 nngt0 9961 . . . . . . . . . . . . . . 15  |-  ( B  e.  NN  ->  0  <  B )
4443adantr 452 . . . . . . . . . . . . . 14  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  0  <  B )
4539, 40, 42, 44addgt0d 9533 . . . . . . . . . . . . 13  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  0  <  ( C  +  B ) )
46 0re 9024 . . . . . . . . . . . . . 14  |-  0  e.  RR
47 ltle 9096 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR  /\  ( C  +  B
)  e.  RR )  ->  ( 0  < 
( C  +  B
)  ->  0  <_  ( C  +  B ) ) )
4846, 47mpan 652 . . . . . . . . . . . . 13  |-  ( ( C  +  B )  e.  RR  ->  (
0  <  ( C  +  B )  ->  0  <_  ( C  +  B
) ) )
4936, 45, 48sylc 58 . . . . . . . . . . . 12  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  0  <_  ( C  +  B ) )
50493adant1 975 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <_  ( C  +  B
) )
51503ad2ant1 978 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  0  <_  ( C  +  B
) )
52 resqrth 11988 . . . . . . . . . 10  |-  ( ( ( C  +  B
)  e.  RR  /\  0  <_  ( C  +  B ) )  -> 
( ( sqr `  ( C  +  B )
) ^ 2 )  =  ( C  +  B ) )
5338, 51, 52syl2anc 643 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( sqr `  ( C  +  B )
) ^ 2 )  =  ( C  +  B ) )
54 resubcl 9297 . . . . . . . . . . . . 13  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( C  -  B
)  e.  RR )
5533, 34, 54syl2anr 465 . . . . . . . . . . . 12  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( C  -  B
)  e.  RR )
56553adant1 975 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( C  -  B )  e.  RR )
57563ad2ant1 978 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  -  B )  e.  RR )
58 pythagtriplem10 13121 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  0  <  ( C  -  B )
)
59583adant3 977 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  0  <  ( C  -  B
) )
60 ltle 9096 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  ( C  -  B
)  e.  RR )  ->  ( 0  < 
( C  -  B
)  ->  0  <_  ( C  -  B ) ) )
6146, 60mpan 652 . . . . . . . . . . 11  |-  ( ( C  -  B )  e.  RR  ->  (
0  <  ( C  -  B )  ->  0  <_  ( C  -  B
) ) )
6257, 59, 61sylc 58 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  0  <_  ( C  -  B
) )
63 resqrth 11988 . . . . . . . . . 10  |-  ( ( ( C  -  B
)  e.  RR  /\  0  <_  ( C  -  B ) )  -> 
( ( sqr `  ( C  -  B )
) ^ 2 )  =  ( C  -  B ) )
6457, 62, 63syl2anc 643 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( sqr `  ( C  -  B )
) ^ 2 )  =  ( C  -  B ) )
6553, 64oveq12d 6038 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( sqr `  ( C  +  B )
) ^ 2 )  -  ( ( sqr `  ( C  -  B
) ) ^ 2 ) )  =  ( ( C  +  B
)  -  ( C  -  B ) ) )
6665oveq1d 6035 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( sqr `  ( C  +  B
) ) ^ 2 )  -  ( ( sqr `  ( C  -  B ) ) ^ 2 ) )  /  2 )  =  ( ( ( C  +  B )  -  ( C  -  B
) )  /  2
) )
67 simp12 988 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  B  e.  NN )
68 simp13 989 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  C  e.  NN )
6967, 68, 8syl2anc 643 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( sqr `  ( C  +  B ) )  e.  CC )
7067, 68, 11syl2anc 643 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( sqr `  ( C  -  B ) )  e.  CC )
71 subsq 11415 . . . . . . . . 9  |-  ( ( ( sqr `  ( C  +  B )
)  e.  CC  /\  ( sqr `  ( C  -  B ) )  e.  CC )  -> 
( ( ( sqr `  ( C  +  B
) ) ^ 2 )  -  ( ( sqr `  ( C  -  B ) ) ^ 2 ) )  =  ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  x.  (
( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) ) )
7269, 70, 71syl2anc 643 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( sqr `  ( C  +  B )
) ^ 2 )  -  ( ( sqr `  ( C  -  B
) ) ^ 2 ) )  =  ( ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  x.  ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) ) )
7372oveq1d 6035 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( sqr `  ( C  +  B
) ) ^ 2 )  -  ( ( sqr `  ( C  -  B ) ) ^ 2 ) )  /  2 )  =  ( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  x.  (
( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) )  /  2 ) )
74 pnncan 9274 . . . . . . . . . . . . . 14  |-  ( ( C  e.  CC  /\  B  e.  CC  /\  B  e.  CC )  ->  (
( C  +  B
)  -  ( C  -  B ) )  =  ( B  +  B ) )
75743anidm23 1243 . . . . . . . . . . . . 13  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C  +  B )  -  ( C  -  B )
)  =  ( B  +  B ) )
76 2times 10031 . . . . . . . . . . . . . 14  |-  ( B  e.  CC  ->  (
2  x.  B )  =  ( B  +  B ) )
7776adantl 453 . . . . . . . . . . . . 13  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  B
)  =  ( B  +  B ) )
7875, 77eqtr4d 2422 . . . . . . . . . . . 12  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C  +  B )  -  ( C  -  B )
)  =  ( 2  x.  B ) )
794, 5, 78syl2anr 465 . . . . . . . . . . 11  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( ( C  +  B )  -  ( C  -  B )
)  =  ( 2  x.  B ) )
80793adant1 975 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( C  +  B
)  -  ( C  -  B ) )  =  ( 2  x.  B ) )
81803ad2ant1 978 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  +  B
)  -  ( C  -  B ) )  =  ( 2  x.  B ) )
8281oveq1d 6035 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( C  +  B )  -  ( C  -  B )
)  /  2 )  =  ( ( 2  x.  B )  / 
2 ) )
83 divcan3 9634 . . . . . . . . . 10  |-  ( ( B  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
( 2  x.  B
)  /  2 )  =  B )
8420, 21, 83mp3an23 1271 . . . . . . . . 9  |-  ( B  e.  CC  ->  (
( 2  x.  B
)  /  2 )  =  B )
8567, 5, 843syl 19 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( 2  x.  B
)  /  2 )  =  B )
8682, 85eqtrd 2419 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( C  +  B )  -  ( C  -  B )
)  /  2 )  =  B )
8766, 73, 863eqtr3d 2427 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( sqr `  ( C  +  B
) )  +  ( sqr `  ( C  -  B ) ) )  x.  ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) ) )  / 
2 )  =  B )
8887oveq1d 6035 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  x.  (
( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) )  /  2 )  / 
2 )  =  ( B  /  2 ) )
8932, 88eqtrd 2419 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( sqr `  ( C  +  B
) )  +  ( sqr `  ( C  -  B ) ) )  /  2 )  x.  ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
) )  =  ( B  /  2 ) )
903, 89syl5eq 2431 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( M  x.  N )  =  ( B  / 
2 ) )
9190oveq2d 6036 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
2  x.  ( M  x.  N ) )  =  ( 2  x.  ( B  /  2
) ) )
92 divcan2 9618 . . . . . 6  |-  ( ( B  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
2  x.  ( B  /  2 ) )  =  B )
9320, 21, 92mp3an23 1271 . . . . 5  |-  ( B  e.  CC  ->  (
2  x.  ( B  /  2 ) )  =  B )
945, 93syl 16 . . . 4  |-  ( B  e.  NN  ->  (
2  x.  ( B  /  2 ) )  =  B )
95943ad2ant2 979 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
2  x.  ( B  /  2 ) )  =  B )
96953ad2ant1 978 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
2  x.  ( B  /  2 ) )  =  B )
9791, 96eqtr2d 2420 1  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  B  =  ( 2  x.  ( M  x.  N
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2550   class class class wbr 4153   ` cfv 5394  (class class class)co 6020   CCcc 8921   RRcr 8922   0cc0 8923   1c1 8924    + caddc 8926    x. cmul 8928    < clt 9053    <_ cle 9054    - cmin 9223    / cdiv 9609   NNcn 9932   2c2 9981   ^cexp 11309   sqrcsqr 11965    || cdivides 12779    gcd cgcd 12933
This theorem is referenced by:  pythagtriplem18  13133
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-er 6841  df-en 7046  df-dom 7047  df-sdom 7048  df-sup 7381  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-3 9991  df-n0 10154  df-z 10215  df-uz 10421  df-rp 10545  df-seq 11251  df-exp 11310  df-cj 11831  df-re 11832  df-im 11833  df-sqr 11967  df-abs 11968
  Copyright terms: Public domain W3C validator