MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythagtriplem19 Unicode version

Theorem pythagtriplem19 12886
Description: Lemma for pythagtrip 12887. Introduce  k and remove the relative primality requirement. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem19  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  ->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
Distinct variable groups:    A, m, n, k    B, m, n, k    C, m, n, k

Proof of Theorem pythagtriplem19
StepHypRef Expression
1 nnz 10045 . . . . . . 7  |-  ( A  e.  NN  ->  A  e.  ZZ )
2 nnz 10045 . . . . . . 7  |-  ( B  e.  NN  ->  B  e.  ZZ )
31, 2anim12i 549 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  e.  ZZ  /\  B  e.  ZZ ) )
4 nnne0 9778 . . . . . . . . 9  |-  ( A  e.  NN  ->  A  =/=  0 )
54neneqd 2462 . . . . . . . 8  |-  ( A  e.  NN  ->  -.  A  =  0 )
65intnanrd 883 . . . . . . 7  |-  ( A  e.  NN  ->  -.  ( A  =  0  /\  B  =  0
) )
76adantr 451 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  -.  ( A  =  0  /\  B  =  0 ) )
8 gcdn0cl 12693 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( A  =  0  /\  B  =  0 ) )  ->  ( A  gcd  B )  e.  NN )
93, 7, 8syl2anc 642 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  NN )
1093adant3 975 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  gcd  B )  e.  NN )
11103ad2ant1 976 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( A  gcd  B
)  e.  NN )
12 gcddvds 12694 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
131, 2, 12syl2an 463 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
14133adant3 975 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  ||  A  /\  ( A  gcd  B ) 
||  B ) )
1514simpld 445 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  gcd  B )  ||  A )
1610nnzd 10116 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  gcd  B )  e.  ZZ )
1710nnne0d 9790 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  gcd  B )  =/=  0 )
1813ad2ant1 976 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  A  e.  ZZ )
19 dvdsval2 12534 . . . . . . . . 9  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  ( A  gcd  B )  =/=  0  /\  A  e.  ZZ )  ->  (
( A  gcd  B
)  ||  A  <->  ( A  /  ( A  gcd  B ) )  e.  ZZ ) )
2016, 17, 18, 19syl3anc 1182 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  ||  A  <->  ( A  /  ( A  gcd  B ) )  e.  ZZ ) )
2115, 20mpbid 201 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  /  ( A  gcd  B ) )  e.  ZZ )
22 nnre 9753 . . . . . . . . 9  |-  ( A  e.  NN  ->  A  e.  RR )
23223ad2ant1 976 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  A  e.  RR )
2410nnred 9761 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  gcd  B )  e.  RR )
25 nngt0 9775 . . . . . . . . 9  |-  ( A  e.  NN  ->  0  <  A )
26253ad2ant1 976 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <  A )
2710nngt0d 9789 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <  ( A  gcd  B
) )
2823, 24, 26, 27divgt0d 9692 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <  ( A  /  ( A  gcd  B ) ) )
29 elnnz 10034 . . . . . . 7  |-  ( ( A  /  ( A  gcd  B ) )  e.  NN  <->  ( ( A  /  ( A  gcd  B ) )  e.  ZZ  /\  0  <  ( A  /  ( A  gcd  B ) ) ) )
3021, 28, 29sylanbrc 645 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  /  ( A  gcd  B ) )  e.  NN )
31303ad2ant1 976 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( A  /  ( A  gcd  B ) )  e.  NN )
3214simprd 449 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  gcd  B )  ||  B )
3323ad2ant2 977 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  B  e.  ZZ )
34 dvdsval2 12534 . . . . . . . . 9  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  ( A  gcd  B )  =/=  0  /\  B  e.  ZZ )  ->  (
( A  gcd  B
)  ||  B  <->  ( B  /  ( A  gcd  B ) )  e.  ZZ ) )
3516, 17, 33, 34syl3anc 1182 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  ||  B  <->  ( B  /  ( A  gcd  B ) )  e.  ZZ ) )
3632, 35mpbid 201 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( B  /  ( A  gcd  B ) )  e.  ZZ )
37 nnre 9753 . . . . . . . . 9  |-  ( B  e.  NN  ->  B  e.  RR )
38373ad2ant2 977 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  B  e.  RR )
39 nngt0 9775 . . . . . . . . 9  |-  ( B  e.  NN  ->  0  <  B )
40393ad2ant2 977 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <  B )
4138, 24, 40, 27divgt0d 9692 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <  ( B  /  ( A  gcd  B ) ) )
42 elnnz 10034 . . . . . . 7  |-  ( ( B  /  ( A  gcd  B ) )  e.  NN  <->  ( ( B  /  ( A  gcd  B ) )  e.  ZZ  /\  0  <  ( B  /  ( A  gcd  B ) ) ) )
4336, 41, 42sylanbrc 645 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( B  /  ( A  gcd  B ) )  e.  NN )
44433ad2ant1 976 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( B  /  ( A  gcd  B ) )  e.  NN )
45 dvdssq 12739 . . . . . . . . . . . . . . 15  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  A  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  <->  ( ( A  gcd  B ) ^
2 )  ||  ( A ^ 2 ) ) )
4616, 18, 45syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  ||  A  <->  ( ( A  gcd  B ) ^
2 )  ||  ( A ^ 2 ) ) )
47 dvdssq 12739 . . . . . . . . . . . . . . 15  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  B  <->  ( ( A  gcd  B ) ^
2 )  ||  ( B ^ 2 ) ) )
4816, 33, 47syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  ||  B  <->  ( ( A  gcd  B ) ^
2 )  ||  ( B ^ 2 ) ) )
4946, 48anbi12d 691 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B )  <->  ( (
( A  gcd  B
) ^ 2 ) 
||  ( A ^
2 )  /\  (
( A  gcd  B
) ^ 2 ) 
||  ( B ^
2 ) ) ) )
5014, 49mpbid 201 . . . . . . . . . . . 12  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( A  gcd  B ) ^ 2 ) 
||  ( A ^
2 )  /\  (
( A  gcd  B
) ^ 2 ) 
||  ( B ^
2 ) ) )
5110nnsqcld 11265 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
) ^ 2 )  e.  NN )
5251nnzd 10116 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
) ^ 2 )  e.  ZZ )
53 nnsqcl 11173 . . . . . . . . . . . . . . 15  |-  ( A  e.  NN  ->  ( A ^ 2 )  e.  NN )
54533ad2ant1 976 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A ^ 2 )  e.  NN )
5554nnzd 10116 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A ^ 2 )  e.  ZZ )
56 nnsqcl 11173 . . . . . . . . . . . . . . 15  |-  ( B  e.  NN  ->  ( B ^ 2 )  e.  NN )
57563ad2ant2 977 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( B ^ 2 )  e.  NN )
5857nnzd 10116 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( B ^ 2 )  e.  ZZ )
59 dvds2add 12560 . . . . . . . . . . . . 13  |-  ( ( ( ( A  gcd  B ) ^ 2 )  e.  ZZ  /\  ( A ^ 2 )  e.  ZZ  /\  ( B ^ 2 )  e.  ZZ )  ->  (
( ( ( A  gcd  B ) ^
2 )  ||  ( A ^ 2 )  /\  ( ( A  gcd  B ) ^ 2 ) 
||  ( B ^
2 ) )  -> 
( ( A  gcd  B ) ^ 2 ) 
||  ( ( A ^ 2 )  +  ( B ^ 2 ) ) ) )
6052, 55, 58, 59syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( ( A  gcd  B ) ^
2 )  ||  ( A ^ 2 )  /\  ( ( A  gcd  B ) ^ 2 ) 
||  ( B ^
2 ) )  -> 
( ( A  gcd  B ) ^ 2 ) 
||  ( ( A ^ 2 )  +  ( B ^ 2 ) ) ) )
6150, 60mpd 14 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
) ^ 2 ) 
||  ( ( A ^ 2 )  +  ( B ^ 2 ) ) )
6261adantr 451 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( ( A  gcd  B ) ^
2 )  ||  (
( A ^ 2 )  +  ( B ^ 2 ) ) )
63 simpr 447 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )
6462, 63breqtrd 4047 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( ( A  gcd  B ) ^
2 )  ||  ( C ^ 2 ) )
65 nnz 10045 . . . . . . . . . . . 12  |-  ( C  e.  NN  ->  C  e.  ZZ )
66653ad2ant3 978 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  C  e.  ZZ )
67 dvdssq 12739 . . . . . . . . . . 11  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  C  e.  ZZ )  ->  ( ( A  gcd  B )  ||  C  <->  ( ( A  gcd  B ) ^
2 )  ||  ( C ^ 2 ) ) )
6816, 66, 67syl2anc 642 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  ||  C  <->  ( ( A  gcd  B ) ^
2 )  ||  ( C ^ 2 ) ) )
6968adantr 451 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( ( A  gcd  B )  ||  C 
<->  ( ( A  gcd  B ) ^ 2 ) 
||  ( C ^
2 ) ) )
7064, 69mpbird 223 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( A  gcd  B )  ||  C )
71 dvdsval2 12534 . . . . . . . . . 10  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  ( A  gcd  B )  =/=  0  /\  C  e.  ZZ )  ->  (
( A  gcd  B
)  ||  C  <->  ( C  /  ( A  gcd  B ) )  e.  ZZ ) )
7216, 17, 66, 71syl3anc 1182 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  ||  C  <->  ( C  /  ( A  gcd  B ) )  e.  ZZ ) )
7372adantr 451 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( ( A  gcd  B )  ||  C 
<->  ( C  /  ( A  gcd  B ) )  e.  ZZ ) )
7470, 73mpbid 201 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( C  / 
( A  gcd  B
) )  e.  ZZ )
75 nnre 9753 . . . . . . . . . 10  |-  ( C  e.  NN  ->  C  e.  RR )
76753ad2ant3 978 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  C  e.  RR )
77 nngt0 9775 . . . . . . . . . 10  |-  ( C  e.  NN  ->  0  <  C )
78773ad2ant3 978 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <  C )
7976, 24, 78, 27divgt0d 9692 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <  ( C  /  ( A  gcd  B ) ) )
8079adantr 451 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  0  <  ( C  /  ( A  gcd  B ) ) )
81 elnnz 10034 . . . . . . 7  |-  ( ( C  /  ( A  gcd  B ) )  e.  NN  <->  ( ( C  /  ( A  gcd  B ) )  e.  ZZ  /\  0  <  ( C  /  ( A  gcd  B ) ) ) )
8274, 80, 81sylanbrc 645 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( C  / 
( A  gcd  B
) )  e.  NN )
83823adant3 975 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( C  /  ( A  gcd  B ) )  e.  NN )
84 nncn 9754 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  A  e.  CC )
85843ad2ant1 976 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  A  e.  CC )
8610nncnd 9762 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  gcd  B )  e.  CC )
8785, 86, 17sqdivd 11258 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  /  ( A  gcd  B ) ) ^ 2 )  =  ( ( A ^
2 )  /  (
( A  gcd  B
) ^ 2 ) ) )
88 nncn 9754 . . . . . . . . . . 11  |-  ( B  e.  NN  ->  B  e.  CC )
89883ad2ant2 977 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  B  e.  CC )
9089, 86, 17sqdivd 11258 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( B  /  ( A  gcd  B ) ) ^ 2 )  =  ( ( B ^
2 )  /  (
( A  gcd  B
) ^ 2 ) ) )
9187, 90oveq12d 5876 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( A  / 
( A  gcd  B
) ) ^ 2 )  +  ( ( B  /  ( A  gcd  B ) ) ^ 2 ) )  =  ( ( ( A ^ 2 )  /  ( ( A  gcd  B ) ^
2 ) )  +  ( ( B ^
2 )  /  (
( A  gcd  B
) ^ 2 ) ) ) )
92913ad2ant1 976 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( ( A  /  ( A  gcd  B ) ) ^ 2 )  +  ( ( B  /  ( A  gcd  B ) ) ^ 2 ) )  =  ( ( ( A ^ 2 )  /  ( ( A  gcd  B ) ^
2 ) )  +  ( ( B ^
2 )  /  (
( A  gcd  B
) ^ 2 ) ) ) )
9354nncnd 9762 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A ^ 2 )  e.  CC )
9457nncnd 9762 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( B ^ 2 )  e.  CC )
9551nncnd 9762 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
) ^ 2 )  e.  CC )
9651nnne0d 9790 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
) ^ 2 )  =/=  0 )
9793, 94, 95, 96divdird 9574 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  /  ( ( A  gcd  B ) ^ 2 ) )  =  ( ( ( A ^ 2 )  /  ( ( A  gcd  B ) ^
2 ) )  +  ( ( B ^
2 )  /  (
( A  gcd  B
) ^ 2 ) ) ) )
98973ad2ant1 976 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( ( A ^ 2 )  +  ( B ^ 2 ) )  /  (
( A  gcd  B
) ^ 2 ) )  =  ( ( ( A ^ 2 )  /  ( ( A  gcd  B ) ^ 2 ) )  +  ( ( B ^ 2 )  / 
( ( A  gcd  B ) ^ 2 ) ) ) )
9992, 98eqtr4d 2318 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( ( A  /  ( A  gcd  B ) ) ^ 2 )  +  ( ( B  /  ( A  gcd  B ) ) ^ 2 ) )  =  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  / 
( ( A  gcd  B ) ^ 2 ) ) )
100 nncn 9754 . . . . . . . . . 10  |-  ( C  e.  NN  ->  C  e.  CC )
1011003ad2ant3 978 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  C  e.  CC )
102101, 86, 17sqdivd 11258 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( C  /  ( A  gcd  B ) ) ^ 2 )  =  ( ( C ^
2 )  /  (
( A  gcd  B
) ^ 2 ) ) )
1031023ad2ant1 976 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( C  / 
( A  gcd  B
) ) ^ 2 )  =  ( ( C ^ 2 )  /  ( ( A  gcd  B ) ^
2 ) ) )
104 oveq1 5865 . . . . . . . 8  |-  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  /  ( ( A  gcd  B ) ^ 2 ) )  =  ( ( C ^ 2 )  / 
( ( A  gcd  B ) ^ 2 ) ) )
1051043ad2ant2 977 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( ( A ^ 2 )  +  ( B ^ 2 ) )  /  (
( A  gcd  B
) ^ 2 ) )  =  ( ( C ^ 2 )  /  ( ( A  gcd  B ) ^
2 ) ) )
106103, 105eqtr4d 2318 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( C  / 
( A  gcd  B
) ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  /  ( ( A  gcd  B ) ^
2 ) ) )
10799, 106eqtr4d 2318 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( ( A  /  ( A  gcd  B ) ) ^ 2 )  +  ( ( B  /  ( A  gcd  B ) ) ^ 2 ) )  =  ( ( C  /  ( A  gcd  B ) ) ^ 2 ) )
108 gcddiv 12728 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( A  gcd  B )  e.  NN )  /\  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )  ->  ( ( A  gcd  B )  / 
( A  gcd  B
) )  =  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) ) )
10918, 33, 10, 14, 108syl31anc 1185 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  /  ( A  gcd  B ) )  =  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) ) )
11086, 17dividd 9534 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  /  ( A  gcd  B ) )  =  1 )
111109, 110eqtr3d 2317 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  =  1 )
1121113ad2ant1 976 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( A  / 
( A  gcd  B
) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 )
113 simp3 957 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  ->  -.  2  ||  ( A  /  ( A  gcd  B ) ) )
114 pythagtriplem18 12885 . . . . 5  |-  ( ( ( ( A  / 
( A  gcd  B
) )  e.  NN  /\  ( B  /  ( A  gcd  B ) )  e.  NN  /\  ( C  /  ( A  gcd  B ) )  e.  NN )  /\  ( ( ( A  /  ( A  gcd  B ) ) ^ 2 )  +  ( ( B  / 
( A  gcd  B
) ) ^ 2 ) )  =  ( ( C  /  ( A  gcd  B ) ) ^ 2 )  /\  ( ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) ) )  ->  E. n  e.  NN  E. m  e.  NN  ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  / 
( A  gcd  B
) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) ) )
11531, 44, 83, 107, 112, 113, 114syl312anc 1203 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  ->  E. n  e.  NN  E. m  e.  NN  (
( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  /  ( A  gcd  B ) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) ) )
11685, 86, 17divcan2d 9538 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  x.  ( A  /  ( A  gcd  B ) ) )  =  A )
117116eqcomd 2288 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  A  =  ( ( A  gcd  B )  x.  ( A  /  ( A  gcd  B ) ) ) )
11889, 86, 17divcan2d 9538 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  x.  ( B  /  ( A  gcd  B ) ) )  =  B )
119118eqcomd 2288 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  B  =  ( ( A  gcd  B )  x.  ( B  /  ( A  gcd  B ) ) ) )
120101, 86, 17divcan2d 9538 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  x.  ( C  /  ( A  gcd  B ) ) )  =  C )
121120eqcomd 2288 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  C  =  ( ( A  gcd  B )  x.  ( C  /  ( A  gcd  B ) ) ) )
122117, 119, 1213jca 1132 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  =  ( ( A  gcd  B )  x.  ( A  /  ( A  gcd  B ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( B  /  ( A  gcd  B ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( C  /  ( A  gcd  B ) ) ) ) )
1231223ad2ant1 976 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( A  =  ( ( A  gcd  B
)  x.  ( A  /  ( A  gcd  B ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( B  /  ( A  gcd  B ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( C  /  ( A  gcd  B ) ) ) ) )
124 oveq2 5866 . . . . . . . . . 10  |-  ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  ->  (
( A  gcd  B
)  x.  ( A  /  ( A  gcd  B ) ) )  =  ( ( A  gcd  B )  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) ) )
125124eqeq2d 2294 . . . . . . . . 9  |-  ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  ->  ( A  =  ( ( A  gcd  B )  x.  ( A  /  ( A  gcd  B ) ) )  <->  A  =  (
( A  gcd  B
)  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) ) ) )
1261253ad2ant1 976 . . . . . . . 8  |-  ( ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  /  ( A  gcd  B ) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) )  ->  ( A  =  ( ( A  gcd  B )  x.  ( A  /  ( A  gcd  B ) ) )  <->  A  =  (
( A  gcd  B
)  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) ) ) )
127 oveq2 5866 . . . . . . . . . 10  |-  ( ( B  /  ( A  gcd  B ) )  =  ( 2  x.  ( m  x.  n
) )  ->  (
( A  gcd  B
)  x.  ( B  /  ( A  gcd  B ) ) )  =  ( ( A  gcd  B )  x.  ( 2  x.  ( m  x.  n ) ) ) )
128127eqeq2d 2294 . . . . . . . . 9  |-  ( ( B  /  ( A  gcd  B ) )  =  ( 2  x.  ( m  x.  n
) )  ->  ( B  =  ( ( A  gcd  B )  x.  ( B  /  ( A  gcd  B ) ) )  <->  B  =  (
( A  gcd  B
)  x.  ( 2  x.  ( m  x.  n ) ) ) ) )
1291283ad2ant2 977 . . . . . . . 8  |-  ( ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  /  ( A  gcd  B ) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) )  ->  ( B  =  ( ( A  gcd  B )  x.  ( B  /  ( A  gcd  B ) ) )  <->  B  =  (
( A  gcd  B
)  x.  ( 2  x.  ( m  x.  n ) ) ) ) )
130 oveq2 5866 . . . . . . . . . 10  |-  ( ( C  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) )  ->  (
( A  gcd  B
)  x.  ( C  /  ( A  gcd  B ) ) )  =  ( ( A  gcd  B )  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )
131130eqeq2d 2294 . . . . . . . . 9  |-  ( ( C  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) )  ->  ( C  =  ( ( A  gcd  B )  x.  ( C  /  ( A  gcd  B ) ) )  <->  C  =  (
( A  gcd  B
)  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) )
1321313ad2ant3 978 . . . . . . . 8  |-  ( ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  /  ( A  gcd  B ) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) )  ->  ( C  =  ( ( A  gcd  B )  x.  ( C  /  ( A  gcd  B ) ) )  <->  C  =  (
( A  gcd  B
)  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) )
133126, 129, 1323anbi123d 1252 . . . . . . 7  |-  ( ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  /  ( A  gcd  B ) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) )  ->  ( ( A  =  ( ( A  gcd  B )  x.  ( A  /  ( A  gcd  B ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( B  /  ( A  gcd  B ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( C  /  ( A  gcd  B ) ) ) )  <->  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) )
134123, 133syl5ibcom 211 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  / 
( A  gcd  B
) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) )  ->  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) )
135134reximdv 2654 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( E. m  e.  NN  ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  / 
( A  gcd  B
) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) )  ->  E. m  e.  NN  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  B  =  ( ( A  gcd  B
)  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B
)  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) ) )
136135reximdv 2654 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( E. n  e.  NN  E. m  e.  NN  ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  / 
( A  gcd  B
) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) )  ->  E. n  e.  NN  E. m  e.  NN  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  B  =  ( ( A  gcd  B
)  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B
)  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) ) )
137115, 136mpd 14 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  ->  E. n  e.  NN  E. m  e.  NN  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
138 oveq1 5865 . . . . . . 7  |-  ( k  =  ( A  gcd  B )  ->  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  =  ( ( A  gcd  B
)  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) ) )
139138eqeq2d 2294 . . . . . 6  |-  ( k  =  ( A  gcd  B )  ->  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  <->  A  =  ( ( A  gcd  B )  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) ) ) )
140 oveq1 5865 . . . . . . 7  |-  ( k  =  ( A  gcd  B )  ->  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  =  ( ( A  gcd  B
)  x.  ( 2  x.  ( m  x.  n ) ) ) )
141140eqeq2d 2294 . . . . . 6  |-  ( k  =  ( A  gcd  B )  ->  ( B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  <->  B  =  ( ( A  gcd  B )  x.  ( 2  x.  ( m  x.  n ) ) ) ) )
142 oveq1 5865 . . . . . . 7  |-  ( k  =  ( A  gcd  B )  ->  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) )  =  ( ( A  gcd  B
)  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )
143142eqeq2d 2294 . . . . . 6  |-  ( k  =  ( A  gcd  B )  ->  ( C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) )  <->  C  =  ( ( A  gcd  B )  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) )
144139, 141, 1433anbi123d 1252 . . . . 5  |-  ( k  =  ( A  gcd  B )  ->  ( ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  <->  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) )
1451442rexbidv 2586 . . . 4  |-  ( k  =  ( A  gcd  B )  ->  ( E. n  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  <->  E. n  e.  NN  E. m  e.  NN  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  B  =  ( ( A  gcd  B
)  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B
)  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) ) )
146145rspcev 2884 . . 3  |-  ( ( ( A  gcd  B
)  e.  NN  /\  E. n  e.  NN  E. m  e.  NN  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )  ->  E. k  e.  NN  E. n  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
14711, 137, 146syl2anc 642 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  ->  E. k  e.  NN  E. n  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
148 rexcom 2701 . . 3  |-  ( E. k  e.  NN  E. n  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  <->  E. n  e.  NN  E. k  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) )
149 rexcom 2701 . . . 4  |-  ( E. k  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  <->  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) )
150149rexbii 2568 . . 3  |-  ( E. n  e.  NN  E. k  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  <->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) )
151148, 150bitri 240 . 2  |-  ( E. k  e.  NN  E. n  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  <->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) )
152147, 151sylib 188 1  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  ->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544   class class class wbr 4023  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    < clt 8867    - cmin 9037    / cdiv 9423   NNcn 9746   2c2 9795   ZZcz 10024   ^cexp 11104    || cdivides 12531    gcd cgcd 12685
This theorem is referenced by:  pythagtrip  12887
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fz 10783  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-dvds 12532  df-gcd 12686  df-prm 12759
  Copyright terms: Public domain W3C validator