MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythagtriplem19 Unicode version

Theorem pythagtriplem19 13127
Description: Lemma for pythagtrip 13128. Introduce  k and remove the relative primality requirement. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem19  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  ->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
Distinct variable groups:    A, m, n, k    B, m, n, k    C, m, n, k

Proof of Theorem pythagtriplem19
StepHypRef Expression
1 nnz 10228 . . . . . . 7  |-  ( A  e.  NN  ->  A  e.  ZZ )
2 nnz 10228 . . . . . . 7  |-  ( B  e.  NN  ->  B  e.  ZZ )
31, 2anim12i 550 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  e.  ZZ  /\  B  e.  ZZ ) )
4 nnne0 9957 . . . . . . . . 9  |-  ( A  e.  NN  ->  A  =/=  0 )
54neneqd 2559 . . . . . . . 8  |-  ( A  e.  NN  ->  -.  A  =  0 )
65intnanrd 884 . . . . . . 7  |-  ( A  e.  NN  ->  -.  ( A  =  0  /\  B  =  0
) )
76adantr 452 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  -.  ( A  =  0  /\  B  =  0 ) )
8 gcdn0cl 12934 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( A  =  0  /\  B  =  0 ) )  ->  ( A  gcd  B )  e.  NN )
93, 7, 8syl2anc 643 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  NN )
1093adant3 977 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  gcd  B )  e.  NN )
11103ad2ant1 978 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( A  gcd  B
)  e.  NN )
12 gcddvds 12935 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
131, 2, 12syl2an 464 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
14133adant3 977 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  ||  A  /\  ( A  gcd  B ) 
||  B ) )
1514simpld 446 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  gcd  B )  ||  A )
1610nnzd 10299 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  gcd  B )  e.  ZZ )
1710nnne0d 9969 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  gcd  B )  =/=  0 )
1813ad2ant1 978 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  A  e.  ZZ )
19 dvdsval2 12775 . . . . . . . . 9  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  ( A  gcd  B )  =/=  0  /\  A  e.  ZZ )  ->  (
( A  gcd  B
)  ||  A  <->  ( A  /  ( A  gcd  B ) )  e.  ZZ ) )
2016, 17, 18, 19syl3anc 1184 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  ||  A  <->  ( A  /  ( A  gcd  B ) )  e.  ZZ ) )
2115, 20mpbid 202 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  /  ( A  gcd  B ) )  e.  ZZ )
22 nnre 9932 . . . . . . . . 9  |-  ( A  e.  NN  ->  A  e.  RR )
23223ad2ant1 978 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  A  e.  RR )
2410nnred 9940 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  gcd  B )  e.  RR )
25 nngt0 9954 . . . . . . . . 9  |-  ( A  e.  NN  ->  0  <  A )
26253ad2ant1 978 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <  A )
2710nngt0d 9968 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <  ( A  gcd  B
) )
2823, 24, 26, 27divgt0d 9871 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <  ( A  /  ( A  gcd  B ) ) )
29 elnnz 10217 . . . . . . 7  |-  ( ( A  /  ( A  gcd  B ) )  e.  NN  <->  ( ( A  /  ( A  gcd  B ) )  e.  ZZ  /\  0  <  ( A  /  ( A  gcd  B ) ) ) )
3021, 28, 29sylanbrc 646 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  /  ( A  gcd  B ) )  e.  NN )
31303ad2ant1 978 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( A  /  ( A  gcd  B ) )  e.  NN )
3214simprd 450 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  gcd  B )  ||  B )
3323ad2ant2 979 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  B  e.  ZZ )
34 dvdsval2 12775 . . . . . . . . 9  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  ( A  gcd  B )  =/=  0  /\  B  e.  ZZ )  ->  (
( A  gcd  B
)  ||  B  <->  ( B  /  ( A  gcd  B ) )  e.  ZZ ) )
3516, 17, 33, 34syl3anc 1184 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  ||  B  <->  ( B  /  ( A  gcd  B ) )  e.  ZZ ) )
3632, 35mpbid 202 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( B  /  ( A  gcd  B ) )  e.  ZZ )
37 nnre 9932 . . . . . . . . 9  |-  ( B  e.  NN  ->  B  e.  RR )
38373ad2ant2 979 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  B  e.  RR )
39 nngt0 9954 . . . . . . . . 9  |-  ( B  e.  NN  ->  0  <  B )
40393ad2ant2 979 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <  B )
4138, 24, 40, 27divgt0d 9871 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <  ( B  /  ( A  gcd  B ) ) )
42 elnnz 10217 . . . . . . 7  |-  ( ( B  /  ( A  gcd  B ) )  e.  NN  <->  ( ( B  /  ( A  gcd  B ) )  e.  ZZ  /\  0  <  ( B  /  ( A  gcd  B ) ) ) )
4336, 41, 42sylanbrc 646 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( B  /  ( A  gcd  B ) )  e.  NN )
44433ad2ant1 978 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( B  /  ( A  gcd  B ) )  e.  NN )
45 dvdssq 12980 . . . . . . . . . . . . . . 15  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  A  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  <->  ( ( A  gcd  B ) ^
2 )  ||  ( A ^ 2 ) ) )
4616, 18, 45syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  ||  A  <->  ( ( A  gcd  B ) ^
2 )  ||  ( A ^ 2 ) ) )
47 dvdssq 12980 . . . . . . . . . . . . . . 15  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  B  <->  ( ( A  gcd  B ) ^
2 )  ||  ( B ^ 2 ) ) )
4816, 33, 47syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  ||  B  <->  ( ( A  gcd  B ) ^
2 )  ||  ( B ^ 2 ) ) )
4946, 48anbi12d 692 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B )  <->  ( (
( A  gcd  B
) ^ 2 ) 
||  ( A ^
2 )  /\  (
( A  gcd  B
) ^ 2 ) 
||  ( B ^
2 ) ) ) )
5014, 49mpbid 202 . . . . . . . . . . . 12  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( A  gcd  B ) ^ 2 ) 
||  ( A ^
2 )  /\  (
( A  gcd  B
) ^ 2 ) 
||  ( B ^
2 ) ) )
5110nnsqcld 11463 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
) ^ 2 )  e.  NN )
5251nnzd 10299 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
) ^ 2 )  e.  ZZ )
53 nnsqcl 11371 . . . . . . . . . . . . . . 15  |-  ( A  e.  NN  ->  ( A ^ 2 )  e.  NN )
54533ad2ant1 978 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A ^ 2 )  e.  NN )
5554nnzd 10299 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A ^ 2 )  e.  ZZ )
56 nnsqcl 11371 . . . . . . . . . . . . . . 15  |-  ( B  e.  NN  ->  ( B ^ 2 )  e.  NN )
57563ad2ant2 979 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( B ^ 2 )  e.  NN )
5857nnzd 10299 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( B ^ 2 )  e.  ZZ )
59 dvds2add 12801 . . . . . . . . . . . . 13  |-  ( ( ( ( A  gcd  B ) ^ 2 )  e.  ZZ  /\  ( A ^ 2 )  e.  ZZ  /\  ( B ^ 2 )  e.  ZZ )  ->  (
( ( ( A  gcd  B ) ^
2 )  ||  ( A ^ 2 )  /\  ( ( A  gcd  B ) ^ 2 ) 
||  ( B ^
2 ) )  -> 
( ( A  gcd  B ) ^ 2 ) 
||  ( ( A ^ 2 )  +  ( B ^ 2 ) ) ) )
6052, 55, 58, 59syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( ( A  gcd  B ) ^
2 )  ||  ( A ^ 2 )  /\  ( ( A  gcd  B ) ^ 2 ) 
||  ( B ^
2 ) )  -> 
( ( A  gcd  B ) ^ 2 ) 
||  ( ( A ^ 2 )  +  ( B ^ 2 ) ) ) )
6150, 60mpd 15 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
) ^ 2 ) 
||  ( ( A ^ 2 )  +  ( B ^ 2 ) ) )
6261adantr 452 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( ( A  gcd  B ) ^
2 )  ||  (
( A ^ 2 )  +  ( B ^ 2 ) ) )
63 simpr 448 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )
6462, 63breqtrd 4170 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( ( A  gcd  B ) ^
2 )  ||  ( C ^ 2 ) )
65 nnz 10228 . . . . . . . . . . . 12  |-  ( C  e.  NN  ->  C  e.  ZZ )
66653ad2ant3 980 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  C  e.  ZZ )
67 dvdssq 12980 . . . . . . . . . . 11  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  C  e.  ZZ )  ->  ( ( A  gcd  B )  ||  C  <->  ( ( A  gcd  B ) ^
2 )  ||  ( C ^ 2 ) ) )
6816, 66, 67syl2anc 643 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  ||  C  <->  ( ( A  gcd  B ) ^
2 )  ||  ( C ^ 2 ) ) )
6968adantr 452 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( ( A  gcd  B )  ||  C 
<->  ( ( A  gcd  B ) ^ 2 ) 
||  ( C ^
2 ) ) )
7064, 69mpbird 224 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( A  gcd  B )  ||  C )
71 dvdsval2 12775 . . . . . . . . . 10  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  ( A  gcd  B )  =/=  0  /\  C  e.  ZZ )  ->  (
( A  gcd  B
)  ||  C  <->  ( C  /  ( A  gcd  B ) )  e.  ZZ ) )
7216, 17, 66, 71syl3anc 1184 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  ||  C  <->  ( C  /  ( A  gcd  B ) )  e.  ZZ ) )
7372adantr 452 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( ( A  gcd  B )  ||  C 
<->  ( C  /  ( A  gcd  B ) )  e.  ZZ ) )
7470, 73mpbid 202 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( C  / 
( A  gcd  B
) )  e.  ZZ )
75 nnre 9932 . . . . . . . . . 10  |-  ( C  e.  NN  ->  C  e.  RR )
76753ad2ant3 980 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  C  e.  RR )
77 nngt0 9954 . . . . . . . . . 10  |-  ( C  e.  NN  ->  0  <  C )
78773ad2ant3 980 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <  C )
7976, 24, 78, 27divgt0d 9871 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <  ( C  /  ( A  gcd  B ) ) )
8079adantr 452 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  0  <  ( C  /  ( A  gcd  B ) ) )
81 elnnz 10217 . . . . . . 7  |-  ( ( C  /  ( A  gcd  B ) )  e.  NN  <->  ( ( C  /  ( A  gcd  B ) )  e.  ZZ  /\  0  <  ( C  /  ( A  gcd  B ) ) ) )
8274, 80, 81sylanbrc 646 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( C  / 
( A  gcd  B
) )  e.  NN )
83823adant3 977 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( C  /  ( A  gcd  B ) )  e.  NN )
84 nncn 9933 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  A  e.  CC )
85843ad2ant1 978 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  A  e.  CC )
8610nncnd 9941 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  gcd  B )  e.  CC )
8785, 86, 17sqdivd 11456 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  /  ( A  gcd  B ) ) ^ 2 )  =  ( ( A ^
2 )  /  (
( A  gcd  B
) ^ 2 ) ) )
88 nncn 9933 . . . . . . . . . . 11  |-  ( B  e.  NN  ->  B  e.  CC )
89883ad2ant2 979 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  B  e.  CC )
9089, 86, 17sqdivd 11456 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( B  /  ( A  gcd  B ) ) ^ 2 )  =  ( ( B ^
2 )  /  (
( A  gcd  B
) ^ 2 ) ) )
9187, 90oveq12d 6031 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( A  / 
( A  gcd  B
) ) ^ 2 )  +  ( ( B  /  ( A  gcd  B ) ) ^ 2 ) )  =  ( ( ( A ^ 2 )  /  ( ( A  gcd  B ) ^
2 ) )  +  ( ( B ^
2 )  /  (
( A  gcd  B
) ^ 2 ) ) ) )
92913ad2ant1 978 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( ( A  /  ( A  gcd  B ) ) ^ 2 )  +  ( ( B  /  ( A  gcd  B ) ) ^ 2 ) )  =  ( ( ( A ^ 2 )  /  ( ( A  gcd  B ) ^
2 ) )  +  ( ( B ^
2 )  /  (
( A  gcd  B
) ^ 2 ) ) ) )
9354nncnd 9941 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A ^ 2 )  e.  CC )
9457nncnd 9941 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( B ^ 2 )  e.  CC )
9551nncnd 9941 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
) ^ 2 )  e.  CC )
9651nnne0d 9969 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
) ^ 2 )  =/=  0 )
9793, 94, 95, 96divdird 9753 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  /  ( ( A  gcd  B ) ^ 2 ) )  =  ( ( ( A ^ 2 )  /  ( ( A  gcd  B ) ^
2 ) )  +  ( ( B ^
2 )  /  (
( A  gcd  B
) ^ 2 ) ) ) )
98973ad2ant1 978 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( ( A ^ 2 )  +  ( B ^ 2 ) )  /  (
( A  gcd  B
) ^ 2 ) )  =  ( ( ( A ^ 2 )  /  ( ( A  gcd  B ) ^ 2 ) )  +  ( ( B ^ 2 )  / 
( ( A  gcd  B ) ^ 2 ) ) ) )
9992, 98eqtr4d 2415 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( ( A  /  ( A  gcd  B ) ) ^ 2 )  +  ( ( B  /  ( A  gcd  B ) ) ^ 2 ) )  =  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  / 
( ( A  gcd  B ) ^ 2 ) ) )
100 nncn 9933 . . . . . . . . . 10  |-  ( C  e.  NN  ->  C  e.  CC )
1011003ad2ant3 980 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  C  e.  CC )
102101, 86, 17sqdivd 11456 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( C  /  ( A  gcd  B ) ) ^ 2 )  =  ( ( C ^
2 )  /  (
( A  gcd  B
) ^ 2 ) ) )
1031023ad2ant1 978 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( C  / 
( A  gcd  B
) ) ^ 2 )  =  ( ( C ^ 2 )  /  ( ( A  gcd  B ) ^
2 ) ) )
104 oveq1 6020 . . . . . . . 8  |-  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  /  ( ( A  gcd  B ) ^ 2 ) )  =  ( ( C ^ 2 )  / 
( ( A  gcd  B ) ^ 2 ) ) )
1051043ad2ant2 979 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( ( A ^ 2 )  +  ( B ^ 2 ) )  /  (
( A  gcd  B
) ^ 2 ) )  =  ( ( C ^ 2 )  /  ( ( A  gcd  B ) ^
2 ) ) )
106103, 105eqtr4d 2415 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( C  / 
( A  gcd  B
) ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  /  ( ( A  gcd  B ) ^
2 ) ) )
10799, 106eqtr4d 2415 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( ( A  /  ( A  gcd  B ) ) ^ 2 )  +  ( ( B  /  ( A  gcd  B ) ) ^ 2 ) )  =  ( ( C  /  ( A  gcd  B ) ) ^ 2 ) )
108 gcddiv 12969 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( A  gcd  B )  e.  NN )  /\  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )  ->  ( ( A  gcd  B )  / 
( A  gcd  B
) )  =  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) ) )
10918, 33, 10, 14, 108syl31anc 1187 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  /  ( A  gcd  B ) )  =  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) ) )
11086, 17dividd 9713 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  /  ( A  gcd  B ) )  =  1 )
111109, 110eqtr3d 2414 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  =  1 )
1121113ad2ant1 978 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( A  / 
( A  gcd  B
) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 )
113 simp3 959 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  ->  -.  2  ||  ( A  /  ( A  gcd  B ) ) )
114 pythagtriplem18 13126 . . . . 5  |-  ( ( ( ( A  / 
( A  gcd  B
) )  e.  NN  /\  ( B  /  ( A  gcd  B ) )  e.  NN  /\  ( C  /  ( A  gcd  B ) )  e.  NN )  /\  ( ( ( A  /  ( A  gcd  B ) ) ^ 2 )  +  ( ( B  / 
( A  gcd  B
) ) ^ 2 ) )  =  ( ( C  /  ( A  gcd  B ) ) ^ 2 )  /\  ( ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) ) )  ->  E. n  e.  NN  E. m  e.  NN  ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  / 
( A  gcd  B
) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) ) )
11531, 44, 83, 107, 112, 113, 114syl312anc 1205 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  ->  E. n  e.  NN  E. m  e.  NN  (
( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  /  ( A  gcd  B ) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) ) )
11685, 86, 17divcan2d 9717 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  x.  ( A  /  ( A  gcd  B ) ) )  =  A )
117116eqcomd 2385 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  A  =  ( ( A  gcd  B )  x.  ( A  /  ( A  gcd  B ) ) ) )
11889, 86, 17divcan2d 9717 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  x.  ( B  /  ( A  gcd  B ) ) )  =  B )
119118eqcomd 2385 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  B  =  ( ( A  gcd  B )  x.  ( B  /  ( A  gcd  B ) ) ) )
120101, 86, 17divcan2d 9717 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  x.  ( C  /  ( A  gcd  B ) ) )  =  C )
121120eqcomd 2385 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  C  =  ( ( A  gcd  B )  x.  ( C  /  ( A  gcd  B ) ) ) )
122117, 119, 1213jca 1134 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  =  ( ( A  gcd  B )  x.  ( A  /  ( A  gcd  B ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( B  /  ( A  gcd  B ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( C  /  ( A  gcd  B ) ) ) ) )
1231223ad2ant1 978 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( A  =  ( ( A  gcd  B
)  x.  ( A  /  ( A  gcd  B ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( B  /  ( A  gcd  B ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( C  /  ( A  gcd  B ) ) ) ) )
124 oveq2 6021 . . . . . . . . . 10  |-  ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  ->  (
( A  gcd  B
)  x.  ( A  /  ( A  gcd  B ) ) )  =  ( ( A  gcd  B )  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) ) )
125124eqeq2d 2391 . . . . . . . . 9  |-  ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  ->  ( A  =  ( ( A  gcd  B )  x.  ( A  /  ( A  gcd  B ) ) )  <->  A  =  (
( A  gcd  B
)  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) ) ) )
1261253ad2ant1 978 . . . . . . . 8  |-  ( ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  /  ( A  gcd  B ) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) )  ->  ( A  =  ( ( A  gcd  B )  x.  ( A  /  ( A  gcd  B ) ) )  <->  A  =  (
( A  gcd  B
)  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) ) ) )
127 oveq2 6021 . . . . . . . . . 10  |-  ( ( B  /  ( A  gcd  B ) )  =  ( 2  x.  ( m  x.  n
) )  ->  (
( A  gcd  B
)  x.  ( B  /  ( A  gcd  B ) ) )  =  ( ( A  gcd  B )  x.  ( 2  x.  ( m  x.  n ) ) ) )
128127eqeq2d 2391 . . . . . . . . 9  |-  ( ( B  /  ( A  gcd  B ) )  =  ( 2  x.  ( m  x.  n
) )  ->  ( B  =  ( ( A  gcd  B )  x.  ( B  /  ( A  gcd  B ) ) )  <->  B  =  (
( A  gcd  B
)  x.  ( 2  x.  ( m  x.  n ) ) ) ) )
1291283ad2ant2 979 . . . . . . . 8  |-  ( ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  /  ( A  gcd  B ) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) )  ->  ( B  =  ( ( A  gcd  B )  x.  ( B  /  ( A  gcd  B ) ) )  <->  B  =  (
( A  gcd  B
)  x.  ( 2  x.  ( m  x.  n ) ) ) ) )
130 oveq2 6021 . . . . . . . . . 10  |-  ( ( C  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) )  ->  (
( A  gcd  B
)  x.  ( C  /  ( A  gcd  B ) ) )  =  ( ( A  gcd  B )  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )
131130eqeq2d 2391 . . . . . . . . 9  |-  ( ( C  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) )  ->  ( C  =  ( ( A  gcd  B )  x.  ( C  /  ( A  gcd  B ) ) )  <->  C  =  (
( A  gcd  B
)  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) )
1321313ad2ant3 980 . . . . . . . 8  |-  ( ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  /  ( A  gcd  B ) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) )  ->  ( C  =  ( ( A  gcd  B )  x.  ( C  /  ( A  gcd  B ) ) )  <->  C  =  (
( A  gcd  B
)  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) )
133126, 129, 1323anbi123d 1254 . . . . . . 7  |-  ( ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  /  ( A  gcd  B ) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) )  ->  ( ( A  =  ( ( A  gcd  B )  x.  ( A  /  ( A  gcd  B ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( B  /  ( A  gcd  B ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( C  /  ( A  gcd  B ) ) ) )  <->  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) )
134123, 133syl5ibcom 212 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  / 
( A  gcd  B
) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) )  ->  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) )
135134reximdv 2753 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( E. m  e.  NN  ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  / 
( A  gcd  B
) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) )  ->  E. m  e.  NN  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  B  =  ( ( A  gcd  B
)  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B
)  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) ) )
136135reximdv 2753 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( E. n  e.  NN  E. m  e.  NN  ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  / 
( A  gcd  B
) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) )  ->  E. n  e.  NN  E. m  e.  NN  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  B  =  ( ( A  gcd  B
)  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B
)  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) ) )
137115, 136mpd 15 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  ->  E. n  e.  NN  E. m  e.  NN  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
138 oveq1 6020 . . . . . . 7  |-  ( k  =  ( A  gcd  B )  ->  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  =  ( ( A  gcd  B
)  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) ) )
139138eqeq2d 2391 . . . . . 6  |-  ( k  =  ( A  gcd  B )  ->  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  <->  A  =  ( ( A  gcd  B )  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) ) ) )
140 oveq1 6020 . . . . . . 7  |-  ( k  =  ( A  gcd  B )  ->  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  =  ( ( A  gcd  B
)  x.  ( 2  x.  ( m  x.  n ) ) ) )
141140eqeq2d 2391 . . . . . 6  |-  ( k  =  ( A  gcd  B )  ->  ( B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  <->  B  =  ( ( A  gcd  B )  x.  ( 2  x.  ( m  x.  n ) ) ) ) )
142 oveq1 6020 . . . . . . 7  |-  ( k  =  ( A  gcd  B )  ->  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) )  =  ( ( A  gcd  B
)  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )
143142eqeq2d 2391 . . . . . 6  |-  ( k  =  ( A  gcd  B )  ->  ( C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) )  <->  C  =  ( ( A  gcd  B )  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) )
144139, 141, 1433anbi123d 1254 . . . . 5  |-  ( k  =  ( A  gcd  B )  ->  ( ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  <->  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) )
1451442rexbidv 2685 . . . 4  |-  ( k  =  ( A  gcd  B )  ->  ( E. n  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  <->  E. n  e.  NN  E. m  e.  NN  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  B  =  ( ( A  gcd  B
)  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B
)  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) ) )
146145rspcev 2988 . . 3  |-  ( ( ( A  gcd  B
)  e.  NN  /\  E. n  e.  NN  E. m  e.  NN  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )  ->  E. k  e.  NN  E. n  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
14711, 137, 146syl2anc 643 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  ->  E. k  e.  NN  E. n  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
148 rexcom 2805 . . 3  |-  ( E. k  e.  NN  E. n  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  <->  E. n  e.  NN  E. k  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) )
149 rexcom 2805 . . . 4  |-  ( E. k  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  <->  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) )
150149rexbii 2667 . . 3  |-  ( E. n  e.  NN  E. k  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  <->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) )
151148, 150bitri 241 . 2  |-  ( E. k  e.  NN  E. n  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  <->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) )
152147, 151sylib 189 1  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  ->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2543   E.wrex 2643   class class class wbr 4146  (class class class)co 6013   CCcc 8914   RRcr 8915   0cc0 8916   1c1 8917    + caddc 8919    x. cmul 8921    < clt 9046    - cmin 9216    / cdiv 9602   NNcn 9925   2c2 9974   ZZcz 10207   ^cexp 11302    || cdivides 12772    gcd cgcd 12926
This theorem is referenced by:  pythagtrip  13128
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993  ax-pre-sup 8994
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-riota 6478  df-recs 6562  df-rdg 6597  df-1o 6653  df-2o 6654  df-oadd 6657  df-er 6834  df-en 7039  df-dom 7040  df-sdom 7041  df-fin 7042  df-sup 7374  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-div 9603  df-nn 9926  df-2 9983  df-3 9984  df-n0 10147  df-z 10208  df-uz 10414  df-rp 10538  df-fz 10969  df-fl 11122  df-mod 11171  df-seq 11244  df-exp 11303  df-cj 11824  df-re 11825  df-im 11826  df-sqr 11960  df-abs 11961  df-dvds 12773  df-gcd 12927  df-prm 13000
  Copyright terms: Public domain W3C validator