MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qaddcl Unicode version

Theorem qaddcl 10348
Description: Closure of addition of rationals. (Contributed by NM, 1-Aug-2004.)
Assertion
Ref Expression
qaddcl  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  +  B
)  e.  QQ )

Proof of Theorem qaddcl
Dummy variables  x  y  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 10334 . 2  |-  ( A  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y ) )
2 elq 10334 . 2  |-  ( B  e.  QQ  <->  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )
3 nnz 10061 . . . . . . . . . . . 12  |-  ( w  e.  NN  ->  w  e.  ZZ )
4 zmulcl 10082 . . . . . . . . . . . 12  |-  ( ( x  e.  ZZ  /\  w  e.  ZZ )  ->  ( x  x.  w
)  e.  ZZ )
53, 4sylan2 460 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  w  e.  NN )  ->  ( x  x.  w
)  e.  ZZ )
65ad2ant2rl 729 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
( x  x.  w
)  e.  ZZ )
7 simpl 443 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  w  e.  NN )  ->  z  e.  ZZ )
8 nnz 10061 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  y  e.  ZZ )
98adantl 452 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  y  e.  ZZ )
10 zmulcl 10082 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  y  e.  ZZ )  ->  ( z  x.  y
)  e.  ZZ )
117, 9, 10syl2anr 464 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
( z  x.  y
)  e.  ZZ )
126, 11zaddcld 10137 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
( ( x  x.  w )  +  ( z  x.  y ) )  e.  ZZ )
1312adantr 451 . . . . . . . 8  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  ( A  =  ( x  / 
y )  /\  B  =  ( z  /  w ) ) )  ->  ( ( x  x.  w )  +  ( z  x.  y
) )  e.  ZZ )
14 nnmulcl 9785 . . . . . . . . . 10  |-  ( ( y  e.  NN  /\  w  e.  NN )  ->  ( y  x.  w
)  e.  NN )
1514ad2ant2l 726 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
( y  x.  w
)  e.  NN )
1615adantr 451 . . . . . . . 8  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  ( A  =  ( x  / 
y )  /\  B  =  ( z  /  w ) ) )  ->  ( y  x.  w )  e.  NN )
17 oveq12 5883 . . . . . . . . 9  |-  ( ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) )  -> 
( A  +  B
)  =  ( ( x  /  y )  +  ( z  /  w ) ) )
18 zcn 10045 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  x  e.  CC )
19 zcn 10045 . . . . . . . . . . . 12  |-  ( z  e.  ZZ  ->  z  e.  CC )
2018, 19anim12i 549 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  z  e.  ZZ )  ->  ( x  e.  CC  /\  z  e.  CC ) )
21 nncn 9770 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  y  e.  CC )
22 nnne0 9794 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  y  =/=  0 )
2321, 22jca 518 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (
y  e.  CC  /\  y  =/=  0 ) )
24 nncn 9770 . . . . . . . . . . . . 13  |-  ( w  e.  NN  ->  w  e.  CC )
25 nnne0 9794 . . . . . . . . . . . . 13  |-  ( w  e.  NN  ->  w  =/=  0 )
2624, 25jca 518 . . . . . . . . . . . 12  |-  ( w  e.  NN  ->  (
w  e.  CC  /\  w  =/=  0 ) )
2723, 26anim12i 549 . . . . . . . . . . 11  |-  ( ( y  e.  NN  /\  w  e.  NN )  ->  ( ( y  e.  CC  /\  y  =/=  0 )  /\  (
w  e.  CC  /\  w  =/=  0 ) ) )
28 divadddiv 9491 . . . . . . . . . . 11  |-  ( ( ( x  e.  CC  /\  z  e.  CC )  /\  ( ( y  e.  CC  /\  y  =/=  0 )  /\  (
w  e.  CC  /\  w  =/=  0 ) ) )  ->  ( (
x  /  y )  +  ( z  /  w ) )  =  ( ( ( x  x.  w )  +  ( z  x.  y
) )  /  (
y  x.  w ) ) )
2920, 27, 28syl2an 463 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  z  e.  ZZ )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( ( x  / 
y )  +  ( z  /  w ) )  =  ( ( ( x  x.  w
)  +  ( z  x.  y ) )  /  ( y  x.  w ) ) )
3029an4s 799 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
( ( x  / 
y )  +  ( z  /  w ) )  =  ( ( ( x  x.  w
)  +  ( z  x.  y ) )  /  ( y  x.  w ) ) )
3117, 30sylan9eqr 2350 . . . . . . . 8  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  ( A  =  ( x  / 
y )  /\  B  =  ( z  /  w ) ) )  ->  ( A  +  B )  =  ( ( ( x  x.  w )  +  ( z  x.  y ) )  /  ( y  x.  w ) ) )
32 rspceov 5909 . . . . . . . . 9  |-  ( ( ( ( x  x.  w )  +  ( z  x.  y ) )  e.  ZZ  /\  ( y  x.  w
)  e.  NN  /\  ( A  +  B
)  =  ( ( ( x  x.  w
)  +  ( z  x.  y ) )  /  ( y  x.  w ) ) )  ->  E. u  e.  ZZ  E. v  e.  NN  ( A  +  B )  =  ( u  / 
v ) )
33 elq 10334 . . . . . . . . 9  |-  ( ( A  +  B )  e.  QQ  <->  E. u  e.  ZZ  E. v  e.  NN  ( A  +  B )  =  ( u  /  v ) )
3432, 33sylibr 203 . . . . . . . 8  |-  ( ( ( ( x  x.  w )  +  ( z  x.  y ) )  e.  ZZ  /\  ( y  x.  w
)  e.  NN  /\  ( A  +  B
)  =  ( ( ( x  x.  w
)  +  ( z  x.  y ) )  /  ( y  x.  w ) ) )  ->  ( A  +  B )  e.  QQ )
3513, 16, 31, 34syl3anc 1182 . . . . . . 7  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  ( A  =  ( x  / 
y )  /\  B  =  ( z  /  w ) ) )  ->  ( A  +  B )  e.  QQ )
3635an4s 799 . . . . . 6  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  A  =  ( x  / 
y ) )  /\  ( ( z  e.  ZZ  /\  w  e.  NN )  /\  B  =  ( z  /  w ) ) )  ->  ( A  +  B )  e.  QQ )
3736exp43 595 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( A  =  ( x  /  y )  ->  ( ( z  e.  ZZ  /\  w  e.  NN )  ->  ( B  =  ( z  /  w )  ->  ( A  +  B )  e.  QQ ) ) ) )
3837rexlimivv 2685 . . . 4  |-  ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y )  ->  (
( z  e.  ZZ  /\  w  e.  NN )  ->  ( B  =  ( z  /  w
)  ->  ( A  +  B )  e.  QQ ) ) )
3938rexlimdvv 2686 . . 3  |-  ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y )  ->  ( E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w )  ->  ( A  +  B )  e.  QQ ) )
4039imp 418 . 2  |-  ( ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y )  /\  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )  ->  ( A  +  B )  e.  QQ )
411, 2, 40syl2anb 465 1  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  +  B
)  e.  QQ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   E.wrex 2557  (class class class)co 5874   CCcc 8751   0cc0 8753    + caddc 8756    x. cmul 8758    / cdiv 9439   NNcn 9762   ZZcz 10040   QQcq 10332
This theorem is referenced by:  qsubcl  10351  qrevaddcl  10354  pcaddlem  12952  pcadd2  12954  qsubdrg  16440  vitalilem1  18979  qaa  19719  padicabv  20795  ostth3  20803  rmxyadd  27109  mpaaeu  27458
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-n0 9982  df-z 10041  df-q 10333
  Copyright terms: Public domain W3C validator