MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qexmid Unicode version

Theorem qexmid 1839
Description: Quantified "excluded middle." Exercise 9.2a of Boolos, p. 111, Computability and Logic. (Contributed by NM, 10-Dec-2000.)
Assertion
Ref Expression
qexmid  |-  E. x
( ph  ->  A. x ph )

Proof of Theorem qexmid
StepHypRef Expression
1 19.8a 1730 . 2  |-  ( A. x ph  ->  E. x A. x ph )
2119.35ri 1592 1  |-  E. x
( ph  ->  A. x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1530   E.wex 1531
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-11 1727
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1532
  Copyright terms: Public domain W3C validator