MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qexpz Unicode version

Theorem qexpz 12965
Description: If a power of a rational number is an integer, then the number is an integer. In other words, all n-th roots are irrational unless they are integers (so that the original number is an n-th power). (Contributed by Mario Carneiro, 10-Aug-2015.)
Assertion
Ref Expression
qexpz  |-  ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  ->  A  e.  ZZ )

Proof of Theorem qexpz
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 eleq1 2356 . 2  |-  ( A  =  0  ->  ( A  e.  ZZ  <->  0  e.  ZZ ) )
2 simpll2 995 . . . . . . . 8  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  N  e.  NN )
32nncnd 9778 . . . . . . 7  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  N  e.  CC )
43mul01d 9027 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  ( N  x.  0 )  =  0 )
5 simpr 447 . . . . . . . . 9  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  p  e.  Prime )
6 simpll3 996 . . . . . . . . 9  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  ( A ^ N )  e.  ZZ )
7 simpll1 994 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  A  e.  QQ )
8 qcn 10346 . . . . . . . . . . 11  |-  ( A  e.  QQ  ->  A  e.  CC )
97, 8syl 15 . . . . . . . . . 10  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  A  e.  CC )
10 simplr 731 . . . . . . . . . 10  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  A  =/=  0 )
112nnzd 10132 . . . . . . . . . 10  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  N  e.  ZZ )
129, 10, 11expne0d 11267 . . . . . . . . 9  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  ( A ^ N )  =/=  0 )
13 pczcl 12917 . . . . . . . . 9  |-  ( ( p  e.  Prime  /\  (
( A ^ N
)  e.  ZZ  /\  ( A ^ N )  =/=  0 ) )  ->  ( p  pCnt  ( A ^ N ) )  e.  NN0 )
145, 6, 12, 13syl12anc 1180 . . . . . . . 8  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  (
p  pCnt  ( A ^ N ) )  e. 
NN0 )
1514nn0ge0d 10037 . . . . . . 7  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  0  <_  ( p  pCnt  ( A ^ N ) ) )
16 pcexp 12928 . . . . . . . 8  |-  ( ( p  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  N  e.  ZZ )  ->  (
p  pCnt  ( A ^ N ) )  =  ( N  x.  (
p  pCnt  A )
) )
175, 7, 10, 11, 16syl121anc 1187 . . . . . . 7  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  (
p  pCnt  ( A ^ N ) )  =  ( N  x.  (
p  pCnt  A )
) )
1815, 17breqtrd 4063 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  0  <_  ( N  x.  (
p  pCnt  A )
) )
194, 18eqbrtrd 4059 . . . . 5  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  ( N  x.  0 )  <_  ( N  x.  ( p  pCnt  A ) ) )
20 0re 8854 . . . . . . 7  |-  0  e.  RR
2120a1i 10 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  0  e.  RR )
22 pcqcl 12925 . . . . . . . 8  |-  ( ( p  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( p  pCnt  A
)  e.  ZZ )
235, 7, 10, 22syl12anc 1180 . . . . . . 7  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  (
p  pCnt  A )  e.  ZZ )
2423zred 10133 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  (
p  pCnt  A )  e.  RR )
252nnred 9777 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  N  e.  RR )
262nngt0d 9805 . . . . . 6  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  0  <  N )
27 lemul2 9625 . . . . . 6  |-  ( ( 0  e.  RR  /\  ( p  pCnt  A )  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( 0  <_  (
p  pCnt  A )  <->  ( N  x.  0 )  <_  ( N  x.  ( p  pCnt  A ) ) ) )
2821, 24, 25, 26, 27syl112anc 1186 . . . . 5  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  (
0  <_  ( p  pCnt  A )  <->  ( N  x.  0 )  <_  ( N  x.  ( p  pCnt  A ) ) ) )
2919, 28mpbird 223 . . . 4  |-  ( ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  0  <_  ( p  pCnt  A
) )
3029ralrimiva 2639 . . 3  |-  ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  ->  A. p  e.  Prime  0  <_  ( p  pCnt  A ) )
31 simpl1 958 . . . 4  |-  ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  ->  A  e.  QQ )
32 pcz 12949 . . . 4  |-  ( A  e.  QQ  ->  ( A  e.  ZZ  <->  A. p  e.  Prime  0  <_  (
p  pCnt  A )
) )
3331, 32syl 15 . . 3  |-  ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  -> 
( A  e.  ZZ  <->  A. p  e.  Prime  0  <_  ( p  pCnt  A
) ) )
3430, 33mpbird 223 . 2  |-  ( ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  /\  A  =/=  0 )  ->  A  e.  ZZ )
35 0z 10051 . . 3  |-  0  e.  ZZ
3635a1i 10 . 2  |-  ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  ->  0  e.  ZZ )
371, 34, 36pm2.61ne 2534 1  |-  ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  ->  A  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   class class class wbr 4039  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753    x. cmul 8758    < clt 8883    <_ cle 8884   NNcn 9762   NN0cn0 9981   ZZcz 10040   QQcq 10332   ^cexp 11120   Primecprime 12774    pCnt cpc 12905
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-fz 10799  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-dvds 12548  df-gcd 12702  df-prm 12775  df-pc 12906
  Copyright terms: Public domain W3C validator