MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qextlt Unicode version

Theorem qextlt 10546
Description: An extensionality-like property for extended real ordering. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
qextlt  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  =  B  <->  A. x  e.  QQ  ( x  < 
A  <->  x  <  B ) ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem qextlt
StepHypRef Expression
1 breq2 4043 . . 3  |-  ( A  =  B  ->  (
x  <  A  <->  x  <  B ) )
21ralrimivw 2640 . 2  |-  ( A  =  B  ->  A. x  e.  QQ  ( x  < 
A  <->  x  <  B ) )
3 xrlttri2 10492 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  =/=  B  <->  ( A  <  B  \/  B  < 
A ) ) )
4 qextltlem 10545 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  ->  E. x  e.  QQ  ( -.  (
x  <  A  <->  x  <  B )  /\  -.  (
x  <_  A  <->  x  <_  B ) ) ) )
5 simpl 443 . . . . . . . 8  |-  ( ( -.  ( x  < 
A  <->  x  <  B )  /\  -.  ( x  <_  A  <->  x  <_  B ) )  ->  -.  ( x  <  A  <->  x  <  B ) )
65reximi 2663 . . . . . . 7  |-  ( E. x  e.  QQ  ( -.  ( x  <  A  <->  x  <  B )  /\  -.  ( x  <_  A  <->  x  <_  B ) )  ->  E. x  e.  QQ  -.  ( x  <  A  <->  x  <  B ) )
74, 6syl6 29 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  ->  E. x  e.  QQ  -.  ( x  <  A  <->  x  <  B ) ) )
8 qextltlem 10545 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  A  e.  RR* )  ->  ( B  <  A  ->  E. x  e.  QQ  ( -.  (
x  <  B  <->  x  <  A )  /\  -.  (
x  <_  B  <->  x  <_  A ) ) ) )
9 simpl 443 . . . . . . . . . 10  |-  ( ( -.  ( x  < 
B  <->  x  <  A )  /\  -.  ( x  <_  B  <->  x  <_  A ) )  ->  -.  ( x  <  B  <->  x  <  A ) )
10 bicom 191 . . . . . . . . . 10  |-  ( ( x  <  B  <->  x  <  A )  <->  ( x  < 
A  <->  x  <  B ) )
119, 10sylnib 295 . . . . . . . . 9  |-  ( ( -.  ( x  < 
B  <->  x  <  A )  /\  -.  ( x  <_  B  <->  x  <_  A ) )  ->  -.  ( x  <  A  <->  x  <  B ) )
1211reximi 2663 . . . . . . . 8  |-  ( E. x  e.  QQ  ( -.  ( x  <  B  <->  x  <  A )  /\  -.  ( x  <_  B  <->  x  <_  A ) )  ->  E. x  e.  QQ  -.  ( x  <  A  <->  x  <  B ) )
138, 12syl6 29 . . . . . . 7  |-  ( ( B  e.  RR*  /\  A  e.  RR* )  ->  ( B  <  A  ->  E. x  e.  QQ  -.  ( x  <  A  <->  x  <  B ) ) )
1413ancoms 439 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B  <  A  ->  E. x  e.  QQ  -.  ( x  <  A  <->  x  <  B ) ) )
157, 14jaod 369 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A  <  B  \/  B  <  A )  ->  E. x  e.  QQ  -.  ( x  <  A  <->  x  <  B ) ) )
163, 15sylbid 206 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  =/=  B  ->  E. x  e.  QQ  -.  ( x  <  A  <->  x  <  B ) ) )
17 rexnal 2567 . . . 4  |-  ( E. x  e.  QQ  -.  ( x  <  A  <->  x  <  B )  <->  -.  A. x  e.  QQ  ( x  < 
A  <->  x  <  B ) )
1816, 17syl6ib 217 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  =/=  B  ->  -.  A. x  e.  QQ  (
x  <  A  <->  x  <  B ) ) )
1918necon4ad 2520 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A. x  e.  QQ  ( x  <  A  <->  x  <  B )  ->  A  =  B ) )
202, 19impbid2 195 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  =  B  <->  A. x  e.  QQ  ( x  < 
A  <->  x  <  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   class class class wbr 4039   RR*cxr 8882    < clt 8883    <_ cle 8884   QQcq 10332
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333
  Copyright terms: Public domain W3C validator