Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qirropth Structured version   Unicode version

Theorem qirropth 26972
Description: This lemma implements the concept of "equate rational and irrational parts", used to prove many arithmetical properties of the X and Y sequences. (Contributed by Stefan O'Rear, 21-Sep-2014.)
Assertion
Ref Expression
qirropth  |-  ( ( A  e.  ( CC 
\  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  -> 
( ( B  +  ( A  x.  C
) )  =  ( D  +  ( A  x.  E ) )  <-> 
( B  =  D  /\  C  =  E ) ) )

Proof of Theorem qirropth
StepHypRef Expression
1 eldifn 3471 . . . . . . . 8  |-  ( A  e.  ( CC  \  QQ )  ->  -.  A  e.  QQ )
213ad2ant1 979 . . . . . . 7  |-  ( ( A  e.  ( CC 
\  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  ->  -.  A  e.  QQ )
32adantr 453 . . . . . 6  |-  ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  ->  -.  A  e.  QQ )
4 simpll1 997 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  A  e.  ( CC  \  QQ ) )
54eldifad 3333 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  A  e.  CC )
6 simp2r 985 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( CC 
\  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  ->  C  e.  QQ )
76ad2antrr 708 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  C  e.  QQ )
8 qcn 10589 . . . . . . . . . . . 12  |-  ( C  e.  QQ  ->  C  e.  CC )
97, 8syl 16 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  C  e.  CC )
10 simp3r 987 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( CC 
\  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  ->  E  e.  QQ )
1110ad2antrr 708 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  E  e.  QQ )
12 qcn 10589 . . . . . . . . . . . 12  |-  ( E  e.  QQ  ->  E  e.  CC )
1311, 12syl 16 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  E  e.  CC )
145, 9, 13subdid 9490 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  ( A  x.  ( C  -  E ) )  =  ( ( A  x.  C )  -  ( A  x.  E )
) )
15 qsubcl 10594 . . . . . . . . . . . . 13  |-  ( ( C  e.  QQ  /\  E  e.  QQ )  ->  ( C  -  E
)  e.  QQ )
167, 11, 15syl2anc 644 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  ( C  -  E )  e.  QQ )
17 qcn 10589 . . . . . . . . . . . 12  |-  ( ( C  -  E )  e.  QQ  ->  ( C  -  E )  e.  CC )
1816, 17syl 16 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  ( C  -  E )  e.  CC )
1918, 5mulcomd 9110 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  (
( C  -  E
)  x.  A )  =  ( A  x.  ( C  -  E
) ) )
20 simplr 733 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  ( B  +  ( A  x.  C ) )  =  ( D  +  ( A  x.  E ) ) )
21 simp2l 984 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( CC 
\  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  ->  B  e.  QQ )
2221ad2antrr 708 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  B  e.  QQ )
23 qcn 10589 . . . . . . . . . . . . 13  |-  ( B  e.  QQ  ->  B  e.  CC )
2422, 23syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  B  e.  CC )
255, 9mulcld 9109 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  ( A  x.  C )  e.  CC )
26 simp3l 986 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( CC 
\  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  ->  D  e.  QQ )
2726ad2antrr 708 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  D  e.  QQ )
28 qcn 10589 . . . . . . . . . . . . 13  |-  ( D  e.  QQ  ->  D  e.  CC )
2927, 28syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  D  e.  CC )
305, 13mulcld 9109 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  ( A  x.  E )  e.  CC )
3124, 25, 29, 30addsubeq4d 9463 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  (
( B  +  ( A  x.  C ) )  =  ( D  +  ( A  x.  E ) )  <->  ( D  -  B )  =  ( ( A  x.  C
)  -  ( A  x.  E ) ) ) )
3220, 31mpbid 203 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  ( D  -  B )  =  ( ( A  x.  C )  -  ( A  x.  E
) ) )
3314, 19, 323eqtr4d 2479 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  (
( C  -  E
)  x.  A )  =  ( D  -  B ) )
34 qsubcl 10594 . . . . . . . . . . . 12  |-  ( ( D  e.  QQ  /\  B  e.  QQ )  ->  ( D  -  B
)  e.  QQ )
3527, 22, 34syl2anc 644 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  ( D  -  B )  e.  QQ )
36 qcn 10589 . . . . . . . . . . 11  |-  ( ( D  -  B )  e.  QQ  ->  ( D  -  B )  e.  CC )
3735, 36syl 16 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  ( D  -  B )  e.  CC )
38 simpr 449 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  -.  C  =  E )
39 subeq0 9328 . . . . . . . . . . . . 13  |-  ( ( C  e.  CC  /\  E  e.  CC )  ->  ( ( C  -  E )  =  0  <-> 
C  =  E ) )
4039necon3abid 2635 . . . . . . . . . . . 12  |-  ( ( C  e.  CC  /\  E  e.  CC )  ->  ( ( C  -  E )  =/=  0  <->  -.  C  =  E ) )
419, 13, 40syl2anc 644 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  (
( C  -  E
)  =/=  0  <->  -.  C  =  E )
)
4238, 41mpbird 225 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  ( C  -  E )  =/=  0 )
4337, 18, 5, 42divmuld 9813 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  (
( ( D  -  B )  /  ( C  -  E )
)  =  A  <->  ( ( C  -  E )  x.  A )  =  ( D  -  B ) ) )
4433, 43mpbird 225 . . . . . . . 8  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  (
( D  -  B
)  /  ( C  -  E ) )  =  A )
45 qdivcl 10596 . . . . . . . . 9  |-  ( ( ( D  -  B
)  e.  QQ  /\  ( C  -  E
)  e.  QQ  /\  ( C  -  E
)  =/=  0 )  ->  ( ( D  -  B )  / 
( C  -  E
) )  e.  QQ )
4635, 16, 42, 45syl3anc 1185 . . . . . . . 8  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  (
( D  -  B
)  /  ( C  -  E ) )  e.  QQ )
4744, 46eqeltrrd 2512 . . . . . . 7  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  -.  C  =  E )  ->  A  e.  QQ )
4847ex 425 . . . . . 6  |-  ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  ->  ( -.  C  =  E  ->  A  e.  QQ ) )
493, 48mt3d 120 . . . . 5  |-  ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  ->  C  =  E )
50 simpl2l 1011 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  ->  B  e.  QQ )
5150, 23syl 16 . . . . . . . 8  |-  ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  ->  B  e.  CC )
5251adantr 453 . . . . . . 7  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  C  =  E )  ->  B  e.  CC )
53 simpl3l 1013 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  ->  D  e.  QQ )
5453, 28syl 16 . . . . . . . 8  |-  ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  ->  D  e.  CC )
5554adantr 453 . . . . . . 7  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  C  =  E )  ->  D  e.  CC )
56 simpl1 961 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  ->  A  e.  ( CC  \  QQ ) )
5756eldifad 3333 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  ->  A  e.  CC )
58 simpl3r 1014 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  ->  E  e.  QQ )
5958, 12syl 16 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  ->  E  e.  CC )
6057, 59mulcld 9109 . . . . . . . 8  |-  ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  ->  ( A  x.  E )  e.  CC )
6160adantr 453 . . . . . . 7  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  C  =  E )  ->  ( A  x.  E )  e.  CC )
62 simpr 449 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  C  =  E )  ->  C  =  E )
6362eqcomd 2442 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  C  =  E )  ->  E  =  C )
6463oveq2d 6098 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  C  =  E )  ->  ( A  x.  E )  =  ( A  x.  C ) )
6564oveq2d 6098 . . . . . . . 8  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  C  =  E )  ->  ( B  +  ( A  x.  E ) )  =  ( B  +  ( A  x.  C ) ) )
66 simplr 733 . . . . . . . 8  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  C  =  E )  ->  ( B  +  ( A  x.  C ) )  =  ( D  +  ( A  x.  E ) ) )
6765, 66eqtrd 2469 . . . . . . 7  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  C  =  E )  ->  ( B  +  ( A  x.  E ) )  =  ( D  +  ( A  x.  E ) ) )
6852, 55, 61, 67addcan2ad 9273 . . . . . 6  |-  ( ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  /\  C  =  E )  ->  B  =  D )
6968ex 425 . . . . 5  |-  ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  ->  ( C  =  E  ->  B  =  D ) )
7049, 69jcai 524 . . . 4  |-  ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  ->  ( C  =  E  /\  B  =  D ) )
7170ancomd 440 . . 3  |-  ( ( ( A  e.  ( CC  \  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  /\  ( B  +  ( A  x.  C )
)  =  ( D  +  ( A  x.  E ) ) )  ->  ( B  =  D  /\  C  =  E ) )
7271ex 425 . 2  |-  ( ( A  e.  ( CC 
\  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  -> 
( ( B  +  ( A  x.  C
) )  =  ( D  +  ( A  x.  E ) )  ->  ( B  =  D  /\  C  =  E ) ) )
73 id 21 . . 3  |-  ( B  =  D  ->  B  =  D )
74 oveq2 6090 . . 3  |-  ( C  =  E  ->  ( A  x.  C )  =  ( A  x.  E ) )
7573, 74oveqan12d 6101 . 2  |-  ( ( B  =  D  /\  C  =  E )  ->  ( B  +  ( A  x.  C ) )  =  ( D  +  ( A  x.  E ) ) )
7672, 75impbid1 196 1  |-  ( ( A  e.  ( CC 
\  QQ )  /\  ( B  e.  QQ  /\  C  e.  QQ )  /\  ( D  e.  QQ  /\  E  e.  QQ ) )  -> 
( ( B  +  ( A  x.  C
) )  =  ( D  +  ( A  x.  E ) )  <-> 
( B  =  D  /\  C  =  E ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2600    \ cdif 3318  (class class class)co 6082   CCcc 8989   0cc0 8991    + caddc 8994    x. cmul 8996    - cmin 9292    / cdiv 9678   QQcq 10575
This theorem is referenced by:  rmxypairf1o  26975  rmxycomplete  26981  rmxyneg  26984  rmxyadd  26985  rmxy1  26986  rmxy0  26987  jm2.22  27067
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702  ax-resscn 9048  ax-1cn 9049  ax-icn 9050  ax-addcl 9051  ax-addrcl 9052  ax-mulcl 9053  ax-mulrcl 9054  ax-mulcom 9055  ax-addass 9056  ax-mulass 9057  ax-distr 9058  ax-i2m1 9059  ax-1ne0 9060  ax-1rid 9061  ax-rnegex 9062  ax-rrecex 9063  ax-cnre 9064  ax-pre-lttri 9065  ax-pre-lttrn 9066  ax-pre-ltadd 9067  ax-pre-mulgt0 9068
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2711  df-rex 2712  df-reu 2713  df-rmo 2714  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-we 4544  df-ord 4585  df-on 4586  df-lim 4587  df-suc 4588  df-om 4847  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-1st 6350  df-2nd 6351  df-riota 6550  df-recs 6634  df-rdg 6669  df-er 6906  df-en 7111  df-dom 7112  df-sdom 7113  df-pnf 9123  df-mnf 9124  df-xr 9125  df-ltxr 9126  df-le 9127  df-sub 9294  df-neg 9295  df-div 9679  df-nn 10002  df-n0 10223  df-z 10284  df-q 10576
  Copyright terms: Public domain W3C validator