MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qliftel Unicode version

Theorem qliftel 6946
Description: Elementhood in the relation  F. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
qlift.1  |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )
qlift.2  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  Y )
qlift.3  |-  ( ph  ->  R  Er  X )
qlift.4  |-  ( ph  ->  X  e.  _V )
Assertion
Ref Expression
qliftel  |-  ( ph  ->  ( [ C ] R F D  <->  E. x  e.  X  ( C R x  /\  D  =  A ) ) )
Distinct variable groups:    x, C    x, D    ph, x    x, R    x, X    x, Y
Allowed substitution hints:    A( x)    F( x)

Proof of Theorem qliftel
StepHypRef Expression
1 qlift.1 . . 3  |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )
2 qlift.2 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  Y )
3 qlift.3 . . . 4  |-  ( ph  ->  R  Er  X )
4 qlift.4 . . . 4  |-  ( ph  ->  X  e.  _V )
51, 2, 3, 4qliftlem 6944 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  [ x ] R  e.  ( X /. R ) )
61, 5, 2fliftel 5990 . 2  |-  ( ph  ->  ( [ C ] R F D  <->  E. x  e.  X  ( [ C ] R  =  [
x ] R  /\  D  =  A )
) )
73adantr 452 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  R  Er  X )
8 simpr 448 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  X )
97, 8erth2 6909 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  ( C R x  <->  [ C ] R  =  [
x ] R ) )
109anbi1d 686 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( C R x  /\  D  =  A )  <->  ( [ C ] R  =  [
x ] R  /\  D  =  A )
) )
1110rexbidva 2683 . 2  |-  ( ph  ->  ( E. x  e.  X  ( C R x  /\  D  =  A )  <->  E. x  e.  X  ( [ C ] R  =  [
x ] R  /\  D  =  A )
) )
126, 11bitr4d 248 1  |-  ( ph  ->  ( [ C ] R F D  <->  E. x  e.  X  ( C R x  /\  D  =  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   E.wrex 2667   _Vcvv 2916   <.cop 3777   class class class wbr 4172    e. cmpt 4226   ran crn 4838    Er wer 6861   [cec 6862   /.cqs 6863
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-er 6864  df-ec 6866  df-qs 6870
  Copyright terms: Public domain W3C validator