Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  qliftfund Structured version   Unicode version

Theorem qliftfund 6992
 Description: The function is the unique function defined by , provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
qlift.1
qlift.2
qlift.3
qlift.4
qliftfun.4
qliftfund.6
Assertion
Ref Expression
qliftfund
Distinct variable groups:   ,   ,   ,,   ,,   ,   ,,   ,,
Allowed substitution hints:   ()   ()   ()

Proof of Theorem qliftfund
StepHypRef Expression
1 qliftfund.6 . . . 4
21ex 425 . . 3
32alrimivv 1643 . 2
4 qlift.1 . . 3
5 qlift.2 . . 3
6 qlift.3 . . 3
7 qlift.4 . . 3
8 qliftfun.4 . . 3
94, 5, 6, 7, 8qliftfun 6991 . 2
103, 9mpbird 225 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 360  wal 1550   wceq 1653   wcel 1726  cvv 2958  cop 3819   class class class wbr 4214   cmpt 4268   crn 4881   wfun 5450   wer 6904  cec 6905 This theorem is referenced by:  orbstafun  15090  frgpupf  15407 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-fv 5464  df-er 6907  df-ec 6909  df-qs 6913
 Copyright terms: Public domain W3C validator