Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  qliftval Structured version   Unicode version

Theorem qliftval 6994
 Description: The value of the function . (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
qlift.1
qlift.2
qlift.3
qlift.4
qliftval.4
qliftval.6
Assertion
Ref Expression
qliftval
Distinct variable groups:   ,   ,   ,   ,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem qliftval
StepHypRef Expression
1 qlift.1 . 2
2 qlift.2 . . 3
3 qlift.3 . . 3
4 qlift.4 . . 3
51, 2, 3, 4qliftlem 6986 . 2
6 eceq1 6942 . 2
7 qliftval.4 . 2
8 qliftval.6 . 2
91, 5, 2, 6, 7, 8fliftval 6039 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 360   wceq 1653   wcel 1726  cvv 2957  cop 3818   cmpt 4267   crn 4880   wfun 5449  cfv 5455   wer 6903  cec 6904  cqs 6905 This theorem is referenced by:  orbstaval  15090  frgpupval  15407 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2711  df-rex 2712  df-rab 2715  df-v 2959  df-sbc 3163  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-op 3824  df-uni 4017  df-br 4214  df-opab 4268  df-mpt 4269  df-id 4499  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fv 5463  df-er 6906  df-ec 6908  df-qs 6912
 Copyright terms: Public domain W3C validator