MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qnegcl Unicode version

Theorem qnegcl 10380
Description: Closure law for the negative of a rational. (Contributed by NM, 2-Aug-2004.) (Revised by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
qnegcl  |-  ( A  e.  QQ  ->  -u A  e.  QQ )

Proof of Theorem qnegcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 10365 . 2  |-  ( A  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y ) )
2 zcn 10076 . . . . . . 7  |-  ( x  e.  ZZ  ->  x  e.  CC )
32adantr 451 . . . . . 6  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  x  e.  CC )
4 nncn 9799 . . . . . . 7  |-  ( y  e.  NN  ->  y  e.  CC )
54adantl 452 . . . . . 6  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  y  e.  CC )
6 nnne0 9823 . . . . . . 7  |-  ( y  e.  NN  ->  y  =/=  0 )
76adantl 452 . . . . . 6  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  y  =/=  0 )
83, 5, 7divnegd 9594 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  -> 
-u ( x  / 
y )  =  (
-u x  /  y
) )
9 znegcl 10102 . . . . . 6  |-  ( x  e.  ZZ  ->  -u x  e.  ZZ )
10 znq 10367 . . . . . 6  |-  ( (
-u x  e.  ZZ  /\  y  e.  NN )  ->  ( -u x  /  y )  e.  QQ )
119, 10sylan 457 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( -u x  / 
y )  e.  QQ )
128, 11eqeltrd 2390 . . . 4  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  -> 
-u ( x  / 
y )  e.  QQ )
13 negeq 9089 . . . . 5  |-  ( A  =  ( x  / 
y )  ->  -u A  =  -u ( x  / 
y ) )
1413eleq1d 2382 . . . 4  |-  ( A  =  ( x  / 
y )  ->  ( -u A  e.  QQ  <->  -u ( x  /  y )  e.  QQ ) )
1512, 14syl5ibrcom 213 . . 3  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( A  =  ( x  /  y )  ->  -u A  e.  QQ ) )
1615rexlimivv 2706 . 2  |-  ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y )  ->  -u A  e.  QQ )
171, 16sylbi 187 1  |-  ( A  e.  QQ  ->  -u A  e.  QQ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1633    e. wcel 1701    =/= wne 2479   E.wrex 2578  (class class class)co 5900   CCcc 8780   0cc0 8782   -ucneg 9083    / cdiv 9468   NNcn 9791   ZZcz 10071   QQcq 10363
This theorem is referenced by:  qsubcl  10382  pcadd2  12985  qsubdrg  16480  vitalilem1  19016  qaa  19756  numdenneg  23312  rmxyneg  26153  mpaaeu  26503
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-resscn 8839  ax-1cn 8840  ax-icn 8841  ax-addcl 8842  ax-addrcl 8843  ax-mulcl 8844  ax-mulrcl 8845  ax-mulcom 8846  ax-addass 8847  ax-mulass 8848  ax-distr 8849  ax-i2m1 8850  ax-1ne0 8851  ax-1rid 8852  ax-rnegex 8853  ax-rrecex 8854  ax-cnre 8855  ax-pre-lttri 8856  ax-pre-lttrn 8857  ax-pre-ltadd 8858  ax-pre-mulgt0 8859
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rmo 2585  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-1st 6164  df-2nd 6165  df-riota 6346  df-recs 6430  df-rdg 6465  df-er 6702  df-en 6907  df-dom 6908  df-sdom 6909  df-pnf 8914  df-mnf 8915  df-xr 8916  df-ltxr 8917  df-le 8918  df-sub 9084  df-neg 9085  df-div 9469  df-nn 9792  df-z 10072  df-q 10364
  Copyright terms: Public domain W3C validator