MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qredeq Unicode version

Theorem qredeq 12785
Description: Two equal reduced fractions have the same numerator and denominator. (Contributed by Jeff Hankins, 29-Sep-2013.)
Assertion
Ref Expression
qredeq  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  /\  ( M  /  N
)  =  ( P  /  Q ) )  ->  ( M  =  P  /\  N  =  Q ) )

Proof of Theorem qredeq
StepHypRef Expression
1 zcn 10029 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  CC )
21adantr 451 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  M  e.  CC )
3 nncn 9754 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  CC )
43adantl 452 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  e.  CC )
5 nnne0 9778 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  =/=  0 )
65adantl 452 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  =/=  0 )
72, 4, 6divcld 9536 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  /  N
)  e.  CC )
873adant3 975 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  ( M  /  N )  e.  CC )
98adantr 451 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( M  /  N )  e.  CC )
10 zcn 10029 . . . . . . . . . 10  |-  ( P  e.  ZZ  ->  P  e.  CC )
1110adantr 451 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  Q  e.  NN )  ->  P  e.  CC )
12 nncn 9754 . . . . . . . . . 10  |-  ( Q  e.  NN  ->  Q  e.  CC )
1312adantl 452 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  Q  e.  NN )  ->  Q  e.  CC )
14 nnne0 9778 . . . . . . . . . 10  |-  ( Q  e.  NN  ->  Q  =/=  0 )
1514adantl 452 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  Q  e.  NN )  ->  Q  =/=  0 )
1611, 13, 15divcld 9536 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  Q  e.  NN )  ->  ( P  /  Q
)  e.  CC )
17163adant3 975 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  ( P  /  Q )  e.  CC )
1817adantl 452 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( P  /  Q )  e.  CC )
1933ad2ant2 977 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  N  e.  CC )
2019adantr 451 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  N  e.  CC )
2153ad2ant2 977 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  N  =/=  0 )
2221adantr 451 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  N  =/=  0
)
239, 18, 20, 22mulcand 9401 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( N  x.  ( M  /  N ) )  =  ( N  x.  ( P  /  Q ) )  <-> 
( M  /  N
)  =  ( P  /  Q ) ) )
242, 4, 6divcan2d 9538 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  ( M  /  N ) )  =  M )
25243adant3 975 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  ( N  x.  ( M  /  N ) )  =  M )
2625adantr 451 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( N  x.  ( M  /  N
) )  =  M )
2726eqeq1d 2291 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( N  x.  ( M  /  N ) )  =  ( N  x.  ( P  /  Q ) )  <-> 
M  =  ( N  x.  ( P  /  Q ) ) ) )
2823, 27bitr3d 246 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( M  /  N )  =  ( P  /  Q
)  <->  M  =  ( N  x.  ( P  /  Q ) ) ) )
2913ad2ant1 976 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  M  e.  CC )
3029adantr 451 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  M  e.  CC )
31 mulcl 8821 . . . . . . 7  |-  ( ( N  e.  CC  /\  ( P  /  Q
)  e.  CC )  ->  ( N  x.  ( P  /  Q
) )  e.  CC )
3219, 17, 31syl2an 463 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( N  x.  ( P  /  Q
) )  e.  CC )
33123ad2ant2 977 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  Q  e.  CC )
3433adantl 452 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  Q  e.  CC )
35143ad2ant2 977 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  Q  =/=  0 )
3635adantl 452 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  Q  =/=  0
)
3730, 32, 34, 36mulcan2d 9402 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( M  x.  Q )  =  ( ( N  x.  ( P  /  Q
) )  x.  Q
)  <->  M  =  ( N  x.  ( P  /  Q ) ) ) )
3820, 18, 34mulassd 8858 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( N  x.  ( P  /  Q ) )  x.  Q )  =  ( N  x.  ( ( P  /  Q )  x.  Q ) ) )
3911, 13, 15divcan1d 9537 . . . . . . . . . 10  |-  ( ( P  e.  ZZ  /\  Q  e.  NN )  ->  ( ( P  /  Q )  x.  Q
)  =  P )
40393adant3 975 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  (
( P  /  Q
)  x.  Q )  =  P )
4140adantl 452 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( P  /  Q )  x.  Q )  =  P )
4241oveq2d 5874 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( N  x.  ( ( P  /  Q )  x.  Q
) )  =  ( N  x.  P ) )
4338, 42eqtrd 2315 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( N  x.  ( P  /  Q ) )  x.  Q )  =  ( N  x.  P ) )
4443eqeq2d 2294 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( M  x.  Q )  =  ( ( N  x.  ( P  /  Q
) )  x.  Q
)  <->  ( M  x.  Q )  =  ( N  x.  P ) ) )
4537, 44bitr3d 246 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( M  =  ( N  x.  ( P  /  Q ) )  <-> 
( M  x.  Q
)  =  ( N  x.  P ) ) )
4628, 45bitrd 244 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( M  /  N )  =  ( P  /  Q
)  <->  ( M  x.  Q )  =  ( N  x.  P ) ) )
47 nnz 10045 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  ZZ )
48473ad2ant2 977 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  N  e.  ZZ )
49 simp2 956 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  Q  e.  NN )
5048, 49anim12i 549 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( N  e.  ZZ  /\  Q  e.  NN ) )
5150adantr 451 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( N  e.  ZZ  /\  Q  e.  NN ) )
5248adantr 451 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  N  e.  ZZ )
53 simpl1 958 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  M  e.  ZZ )
54 nnz 10045 . . . . . . . . . . . 12  |-  ( Q  e.  NN  ->  Q  e.  ZZ )
55543ad2ant2 977 . . . . . . . . . . 11  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  Q  e.  ZZ )
5655adantl 452 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  Q  e.  ZZ )
5752, 53, 563jca 1132 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( N  e.  ZZ  /\  M  e.  ZZ  /\  Q  e.  ZZ ) )
5857adantr 451 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( N  e.  ZZ  /\  M  e.  ZZ  /\  Q  e.  ZZ ) )
59 simp1 955 . . . . . . . . . . . 12  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  P  e.  ZZ )
60 dvdsmul1 12550 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  P  e.  ZZ )  ->  N  ||  ( N  x.  P ) )
6148, 59, 60syl2an 463 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  N  ||  ( N  x.  P )
)
6261adantr 451 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  N  ||  ( N  x.  P )
)
63 simpr 447 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( M  x.  Q )  =  ( N  x.  P ) )
6462, 63breqtrrd 4049 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  N  ||  ( M  x.  Q )
)
65 gcdcom 12699 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  gcd  M
)  =  ( M  gcd  N ) )
6647, 65sylan 457 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  M  e.  ZZ )  ->  ( N  gcd  M
)  =  ( M  gcd  N ) )
6766ancoms 439 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  gcd  M
)  =  ( M  gcd  N ) )
68673adant3 975 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  ( N  gcd  M )  =  ( M  gcd  N
) )
69 simp3 957 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  ( M  gcd  N )  =  1 )
7068, 69eqtrd 2315 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  ( N  gcd  M )  =  1 )
7170ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( N  gcd  M )  =  1 )
7264, 71jca 518 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( N  ||  ( M  x.  Q
)  /\  ( N  gcd  M )  =  1 ) )
73 coprmdvds 12781 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  Q  e.  ZZ )  ->  (
( N  ||  ( M  x.  Q )  /\  ( N  gcd  M
)  =  1 )  ->  N  ||  Q
) )
7458, 72, 73sylc 56 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  N  ||  Q
)
75 dvdsle 12574 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  Q  e.  NN )  ->  ( N  ||  Q  ->  N  <_  Q )
)
7651, 74, 75sylc 56 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  N  <_  Q
)
77 simp2 956 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  N  e.  NN )
7855, 77anim12i 549 . . . . . . . . 9  |-  ( ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  /\  ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  ->  ( Q  e.  ZZ  /\  N  e.  NN ) )
7978ancoms 439 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( Q  e.  ZZ  /\  N  e.  NN ) )
8079adantr 451 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( Q  e.  ZZ  /\  N  e.  NN ) )
81 simpr1 961 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  P  e.  ZZ )
8256, 81, 523jca 1132 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( Q  e.  ZZ  /\  P  e.  ZZ  /\  N  e.  ZZ ) )
8382adantr 451 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( Q  e.  ZZ  /\  P  e.  ZZ  /\  N  e.  ZZ ) )
84 simp1 955 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  M  e.  ZZ )
85 dvdsmul2 12551 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  Q  e.  ZZ )  ->  Q  ||  ( M  x.  Q ) )
8684, 55, 85syl2an 463 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  Q  ||  ( M  x.  Q )
)
8786adantr 451 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  Q  ||  ( M  x.  Q )
)
88103ad2ant1 976 . . . . . . . . . . . . 13  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  P  e.  CC )
89 mulcom 8823 . . . . . . . . . . . . 13  |-  ( ( N  e.  CC  /\  P  e.  CC )  ->  ( N  x.  P
)  =  ( P  x.  N ) )
9019, 88, 89syl2an 463 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( N  x.  P )  =  ( P  x.  N ) )
9190adantr 451 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( N  x.  P )  =  ( P  x.  N ) )
9263, 91eqtrd 2315 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( M  x.  Q )  =  ( P  x.  N ) )
9387, 92breqtrd 4047 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  Q  ||  ( P  x.  N )
)
94 gcdcom 12699 . . . . . . . . . . . . . 14  |-  ( ( Q  e.  ZZ  /\  P  e.  ZZ )  ->  ( Q  gcd  P
)  =  ( P  gcd  Q ) )
9554, 94sylan 457 . . . . . . . . . . . . 13  |-  ( ( Q  e.  NN  /\  P  e.  ZZ )  ->  ( Q  gcd  P
)  =  ( P  gcd  Q ) )
9695ancoms 439 . . . . . . . . . . . 12  |-  ( ( P  e.  ZZ  /\  Q  e.  NN )  ->  ( Q  gcd  P
)  =  ( P  gcd  Q ) )
97963adant3 975 . . . . . . . . . . 11  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  ( Q  gcd  P )  =  ( P  gcd  Q
) )
98 simp3 957 . . . . . . . . . . 11  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  ( P  gcd  Q )  =  1 )
9997, 98eqtrd 2315 . . . . . . . . . 10  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  ( Q  gcd  P )  =  1 )
10099ad2antlr 707 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( Q  gcd  P )  =  1 )
10193, 100jca 518 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( Q  ||  ( P  x.  N
)  /\  ( Q  gcd  P )  =  1 ) )
102 coprmdvds 12781 . . . . . . . 8  |-  ( ( Q  e.  ZZ  /\  P  e.  ZZ  /\  N  e.  ZZ )  ->  (
( Q  ||  ( P  x.  N )  /\  ( Q  gcd  P
)  =  1 )  ->  Q  ||  N
) )
10383, 101, 102sylc 56 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  Q  ||  N
)
104 dvdsle 12574 . . . . . . 7  |-  ( ( Q  e.  ZZ  /\  N  e.  NN )  ->  ( Q  ||  N  ->  Q  <_  N )
)
10580, 103, 104sylc 56 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  Q  <_  N
)
106 nnre 9753 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  RR )
1071063ad2ant2 977 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  N  e.  RR )
108107ad2antrr 706 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  N  e.  RR )
109 nnre 9753 . . . . . . . . 9  |-  ( Q  e.  NN  ->  Q  e.  RR )
1101093ad2ant2 977 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  Q  e.  RR )
111110ad2antlr 707 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  Q  e.  RR )
112108, 111letri3d 8961 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( N  =  Q  <->  ( N  <_  Q  /\  Q  <_  N
) ) )
11376, 105, 112mpbir2and 888 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  N  =  Q )
114 oveq2 5866 . . . . . . . . . 10  |-  ( N  =  Q  ->  ( M  x.  N )  =  ( M  x.  Q ) )
115114eqeq1d 2291 . . . . . . . . 9  |-  ( N  =  Q  ->  (
( M  x.  N
)  =  ( N  x.  P )  <->  ( M  x.  Q )  =  ( N  x.  P ) ) )
116115anbi2d 684 . . . . . . . 8  |-  ( N  =  Q  ->  (
( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  N
)  =  ( N  x.  P ) )  <-> 
( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) ) ) )
117 mulcom 8823 . . . . . . . . . . . . . 14  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( M  x.  N
)  =  ( N  x.  M ) )
1181, 3, 117syl2an 463 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  x.  N
)  =  ( N  x.  M ) )
1191183adant3 975 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  ( M  x.  N )  =  ( N  x.  M ) )
120119adantr 451 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( M  x.  N )  =  ( N  x.  M ) )
121120eqeq1d 2291 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( M  x.  N )  =  ( N  x.  P
)  <->  ( N  x.  M )  =  ( N  x.  P ) ) )
12288adantl 452 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  P  e.  CC )
12330, 122, 20, 22mulcand 9401 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( N  x.  M )  =  ( N  x.  P
)  <->  M  =  P
) )
124121, 123bitrd 244 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( M  x.  N )  =  ( N  x.  P
)  <->  M  =  P
) )
125124biimpa 470 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  N
)  =  ( N  x.  P ) )  ->  M  =  P )
126116, 125syl6bir 220 . . . . . . 7  |-  ( N  =  Q  ->  (
( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  M  =  P ) )
127126com12 27 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( N  =  Q  ->  M  =  P ) )
128127ancrd 537 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( N  =  Q  ->  ( M  =  P  /\  N  =  Q ) ) )
129113, 128mpd 14 . . . 4  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( M  =  P  /\  N  =  Q ) )
130129ex 423 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( M  x.  Q )  =  ( N  x.  P
)  ->  ( M  =  P  /\  N  =  Q ) ) )
13146, 130sylbid 206 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( M  /  N )  =  ( P  /  Q
)  ->  ( M  =  P  /\  N  =  Q ) ) )
1321313impia 1148 1  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  /\  ( M  /  N
)  =  ( P  /  Q ) )  ->  ( M  =  P  /\  N  =  Q ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   class class class wbr 4023  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    x. cmul 8742    <_ cle 8868    / cdiv 9423   NNcn 9746   ZZcz 10024    || cdivides 12531    gcd cgcd 12685
This theorem is referenced by:  qredeu  12786  qredeqOLD  26240
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-dvds 12532  df-gcd 12686
  Copyright terms: Public domain W3C validator