MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qredeu Unicode version

Theorem qredeu 12786
Description: Every rational number has a unique reduced form. (Contributed by Jeff Hankins, 29-Sep-2013.)
Assertion
Ref Expression
qredeu  |-  ( A  e.  QQ  ->  E! x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) )
Distinct variable group:    x, A

Proof of Theorem qredeu
Dummy variables  n  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnz 10045 . . . . . . . . . 10  |-  ( n  e.  NN  ->  n  e.  ZZ )
2 gcddvds 12694 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( z  gcd  n )  ||  z  /\  ( z  gcd  n
)  ||  n )
)
32simpld 445 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  n  e.  ZZ )  ->  ( z  gcd  n
)  ||  z )
41, 3sylan2 460 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( z  gcd  n
)  ||  z )
5 gcdcl 12696 . . . . . . . . . . . 12  |-  ( ( z  e.  ZZ  /\  n  e.  ZZ )  ->  ( z  gcd  n
)  e.  NN0 )
61, 5sylan2 460 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( z  gcd  n
)  e.  NN0 )
76nn0zd 10115 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( z  gcd  n
)  e.  ZZ )
8 simpl 443 . . . . . . . . . . . 12  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  z  e.  ZZ )
91adantl 452 . . . . . . . . . . . 12  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  n  e.  ZZ )
10 nnne0 9778 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  n  =/=  0 )
1110neneqd 2462 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  -.  n  =  0 )
1211intnand 882 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  -.  ( z  =  0  /\  n  =  0 ) )
1312adantl 452 . . . . . . . . . . . 12  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  -.  ( z  =  0  /\  n  =  0 ) )
14 gcdn0cl 12693 . . . . . . . . . . . 12  |-  ( ( ( z  e.  ZZ  /\  n  e.  ZZ )  /\  -.  ( z  =  0  /\  n  =  0 ) )  ->  ( z  gcd  n )  e.  NN )
158, 9, 13, 14syl21anc 1181 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( z  gcd  n
)  e.  NN )
16 nnne0 9778 . . . . . . . . . . 11  |-  ( ( z  gcd  n )  e.  NN  ->  (
z  gcd  n )  =/=  0 )
1715, 16syl 15 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( z  gcd  n
)  =/=  0 )
18 dvdsval2 12534 . . . . . . . . . 10  |-  ( ( ( z  gcd  n
)  e.  ZZ  /\  ( z  gcd  n
)  =/=  0  /\  z  e.  ZZ )  ->  ( ( z  gcd  n )  ||  z 
<->  ( z  /  (
z  gcd  n )
)  e.  ZZ ) )
197, 17, 8, 18syl3anc 1182 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  gcd  n )  ||  z  <->  ( z  /  ( z  gcd  n ) )  e.  ZZ ) )
204, 19mpbid 201 . . . . . . . 8  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( z  /  (
z  gcd  n )
)  e.  ZZ )
21203adant3 975 . . . . . . 7  |-  ( ( z  e.  ZZ  /\  n  e.  NN  /\  A  =  ( z  /  n ) )  -> 
( z  /  (
z  gcd  n )
)  e.  ZZ )
222simprd 449 . . . . . . . . . . . 12  |-  ( ( z  e.  ZZ  /\  n  e.  ZZ )  ->  ( z  gcd  n
)  ||  n )
231, 22sylan2 460 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( z  gcd  n
)  ||  n )
24 dvdsval2 12534 . . . . . . . . . . . 12  |-  ( ( ( z  gcd  n
)  e.  ZZ  /\  ( z  gcd  n
)  =/=  0  /\  n  e.  ZZ )  ->  ( ( z  gcd  n )  ||  n 
<->  ( n  /  (
z  gcd  n )
)  e.  ZZ ) )
257, 17, 9, 24syl3anc 1182 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  gcd  n )  ||  n  <->  ( n  /  ( z  gcd  n ) )  e.  ZZ ) )
2623, 25mpbid 201 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( n  /  (
z  gcd  n )
)  e.  ZZ )
27 nnre 9753 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  n  e.  RR )
2827adantl 452 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  n  e.  RR )
296nn0red 10019 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( z  gcd  n
)  e.  RR )
30 nngt0 9775 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  0  <  n )
3130adantl 452 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  0  <  n )
32 nngt0 9775 . . . . . . . . . . . 12  |-  ( ( z  gcd  n )  e.  NN  ->  0  <  ( z  gcd  n
) )
3315, 32syl 15 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  0  <  ( z  gcd  n ) )
3428, 29, 31, 33divgt0d 9692 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  0  <  ( n  /  ( z  gcd  n ) ) )
3526, 34jca 518 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( n  / 
( z  gcd  n
) )  e.  ZZ  /\  0  <  ( n  /  ( z  gcd  n ) ) ) )
36353adant3 975 . . . . . . . 8  |-  ( ( z  e.  ZZ  /\  n  e.  NN  /\  A  =  ( z  /  n ) )  -> 
( ( n  / 
( z  gcd  n
) )  e.  ZZ  /\  0  <  ( n  /  ( z  gcd  n ) ) ) )
37 elnnz 10034 . . . . . . . 8  |-  ( ( n  /  ( z  gcd  n ) )  e.  NN  <->  ( (
n  /  ( z  gcd  n ) )  e.  ZZ  /\  0  <  ( n  /  (
z  gcd  n )
) ) )
3836, 37sylibr 203 . . . . . . 7  |-  ( ( z  e.  ZZ  /\  n  e.  NN  /\  A  =  ( z  /  n ) )  -> 
( n  /  (
z  gcd  n )
)  e.  NN )
39 opelxpi 4721 . . . . . . 7  |-  ( ( ( z  /  (
z  gcd  n )
)  e.  ZZ  /\  ( n  /  (
z  gcd  n )
)  e.  NN )  ->  <. ( z  / 
( z  gcd  n
) ) ,  ( n  /  ( z  gcd  n ) )
>.  e.  ( ZZ  X.  NN ) )
4021, 38, 39syl2anc 642 . . . . . 6  |-  ( ( z  e.  ZZ  /\  n  e.  NN  /\  A  =  ( z  /  n ) )  ->  <. ( z  /  (
z  gcd  n )
) ,  ( n  /  ( z  gcd  n ) ) >.  e.  ( ZZ  X.  NN ) )
416nn0cnd 10020 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( z  gcd  n
)  e.  CC )
4241mulid1d 8852 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  gcd  n )  x.  1 )  =  ( z  gcd  n ) )
43 zcn 10029 . . . . . . . . . . . 12  |-  ( z  e.  ZZ  ->  z  e.  CC )
4443adantr 451 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  z  e.  CC )
4544, 41, 17divcan2d 9538 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  gcd  n )  x.  (
z  /  ( z  gcd  n ) ) )  =  z )
46 nncn 9754 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  n  e.  CC )
4746adantl 452 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  n  e.  CC )
4847, 41, 17divcan2d 9538 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  gcd  n )  x.  (
n  /  ( z  gcd  n ) ) )  =  n )
4945, 48oveq12d 5876 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( ( z  gcd  n )  x.  ( z  /  (
z  gcd  n )
) )  gcd  (
( z  gcd  n
)  x.  ( n  /  ( z  gcd  n ) ) ) )  =  ( z  gcd  n ) )
50 mulgcd 12725 . . . . . . . . . 10  |-  ( ( ( z  gcd  n
)  e.  NN0  /\  ( z  /  (
z  gcd  n )
)  e.  ZZ  /\  ( n  /  (
z  gcd  n )
)  e.  ZZ )  ->  ( ( ( z  gcd  n )  x.  ( z  / 
( z  gcd  n
) ) )  gcd  ( ( z  gcd  n )  x.  (
n  /  ( z  gcd  n ) ) ) )  =  ( ( z  gcd  n
)  x.  ( ( z  /  ( z  gcd  n ) )  gcd  ( n  / 
( z  gcd  n
) ) ) ) )
516, 20, 26, 50syl3anc 1182 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( ( z  gcd  n )  x.  ( z  /  (
z  gcd  n )
) )  gcd  (
( z  gcd  n
)  x.  ( n  /  ( z  gcd  n ) ) ) )  =  ( ( z  gcd  n )  x.  ( ( z  /  ( z  gcd  n ) )  gcd  ( n  /  (
z  gcd  n )
) ) ) )
5242, 49, 513eqtr2rd 2322 . . . . . . . 8  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  gcd  n )  x.  (
( z  /  (
z  gcd  n )
)  gcd  ( n  /  ( z  gcd  n ) ) ) )  =  ( ( z  gcd  n )  x.  1 ) )
5320, 26gcdcld 12697 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  / 
( z  gcd  n
) )  gcd  (
n  /  ( z  gcd  n ) ) )  e.  NN0 )
5453nn0cnd 10020 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  / 
( z  gcd  n
) )  gcd  (
n  /  ( z  gcd  n ) ) )  e.  CC )
55 ax-1cn 8795 . . . . . . . . . 10  |-  1  e.  CC
5655a1i 10 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  1  e.  CC )
5754, 56, 41, 17mulcand 9401 . . . . . . . 8  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( ( z  gcd  n )  x.  ( ( z  / 
( z  gcd  n
) )  gcd  (
n  /  ( z  gcd  n ) ) ) )  =  ( ( z  gcd  n
)  x.  1 )  <-> 
( ( z  / 
( z  gcd  n
) )  gcd  (
n  /  ( z  gcd  n ) ) )  =  1 ) )
5852, 57mpbid 201 . . . . . . 7  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  / 
( z  gcd  n
) )  gcd  (
n  /  ( z  gcd  n ) ) )  =  1 )
59583adant3 975 . . . . . 6  |-  ( ( z  e.  ZZ  /\  n  e.  NN  /\  A  =  ( z  /  n ) )  -> 
( ( z  / 
( z  gcd  n
) )  gcd  (
n  /  ( z  gcd  n ) ) )  =  1 )
6010adantl 452 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  n  =/=  0 )
6144, 47, 41, 60, 17divcan7d 9564 . . . . . . . 8  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  / 
( z  gcd  n
) )  /  (
n  /  ( z  gcd  n ) ) )  =  ( z  /  n ) )
6261eqeq2d 2294 . . . . . . 7  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( A  =  ( ( z  /  (
z  gcd  n )
)  /  ( n  /  ( z  gcd  n ) ) )  <-> 
A  =  ( z  /  n ) ) )
6362biimp3ar 1282 . . . . . 6  |-  ( ( z  e.  ZZ  /\  n  e.  NN  /\  A  =  ( z  /  n ) )  ->  A  =  ( (
z  /  ( z  gcd  n ) )  /  ( n  / 
( z  gcd  n
) ) ) )
64 ovex 5883 . . . . . . . . . . 11  |-  ( z  /  ( z  gcd  n ) )  e. 
_V
65 ovex 5883 . . . . . . . . . . 11  |-  ( n  /  ( z  gcd  n ) )  e. 
_V
6664, 65op1std 6130 . . . . . . . . . 10  |-  ( x  =  <. ( z  / 
( z  gcd  n
) ) ,  ( n  /  ( z  gcd  n ) )
>.  ->  ( 1st `  x
)  =  ( z  /  ( z  gcd  n ) ) )
6764, 65op2ndd 6131 . . . . . . . . . 10  |-  ( x  =  <. ( z  / 
( z  gcd  n
) ) ,  ( n  /  ( z  gcd  n ) )
>.  ->  ( 2nd `  x
)  =  ( n  /  ( z  gcd  n ) ) )
6866, 67oveq12d 5876 . . . . . . . . 9  |-  ( x  =  <. ( z  / 
( z  gcd  n
) ) ,  ( n  /  ( z  gcd  n ) )
>.  ->  ( ( 1st `  x )  gcd  ( 2nd `  x ) )  =  ( ( z  /  ( z  gcd  n ) )  gcd  ( n  /  (
z  gcd  n )
) ) )
6968eqeq1d 2291 . . . . . . . 8  |-  ( x  =  <. ( z  / 
( z  gcd  n
) ) ,  ( n  /  ( z  gcd  n ) )
>.  ->  ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  <-> 
( ( z  / 
( z  gcd  n
) )  gcd  (
n  /  ( z  gcd  n ) ) )  =  1 ) )
7066, 67oveq12d 5876 . . . . . . . . 9  |-  ( x  =  <. ( z  / 
( z  gcd  n
) ) ,  ( n  /  ( z  gcd  n ) )
>.  ->  ( ( 1st `  x )  /  ( 2nd `  x ) )  =  ( ( z  /  ( z  gcd  n ) )  / 
( n  /  (
z  gcd  n )
) ) )
7170eqeq2d 2294 . . . . . . . 8  |-  ( x  =  <. ( z  / 
( z  gcd  n
) ) ,  ( n  /  ( z  gcd  n ) )
>.  ->  ( A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) )  <->  A  =  ( ( z  / 
( z  gcd  n
) )  /  (
n  /  ( z  gcd  n ) ) ) ) )
7269, 71anbi12d 691 . . . . . . 7  |-  ( x  =  <. ( z  / 
( z  gcd  n
) ) ,  ( n  /  ( z  gcd  n ) )
>.  ->  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  <-> 
( ( ( z  /  ( z  gcd  n ) )  gcd  ( n  /  (
z  gcd  n )
) )  =  1  /\  A  =  ( ( z  /  (
z  gcd  n )
)  /  ( n  /  ( z  gcd  n ) ) ) ) ) )
7372rspcev 2884 . . . . . 6  |-  ( (
<. ( z  /  (
z  gcd  n )
) ,  ( n  /  ( z  gcd  n ) ) >.  e.  ( ZZ  X.  NN )  /\  ( ( ( z  /  ( z  gcd  n ) )  gcd  ( n  / 
( z  gcd  n
) ) )  =  1  /\  A  =  ( ( z  / 
( z  gcd  n
) )  /  (
n  /  ( z  gcd  n ) ) ) ) )  ->  E. x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) )
7440, 59, 63, 73syl12anc 1180 . . . . 5  |-  ( ( z  e.  ZZ  /\  n  e.  NN  /\  A  =  ( z  /  n ) )  ->  E. x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) )
75 elxp6 6151 . . . . . . 7  |-  ( x  e.  ( ZZ  X.  NN )  <->  ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) ) )
76 elxp6 6151 . . . . . . 7  |-  ( y  e.  ( ZZ  X.  NN )  <->  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )
77 simprl 732 . . . . . . . . . . . 12  |-  ( ( x  =  <. ( 1st `  x ) ,  ( 2nd `  x
) >.  /\  ( ( 1st `  x )  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  ->  ( 1st `  x )  e.  ZZ )
7877ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  ( 1st `  x )  e.  ZZ )
79 simprr 733 . . . . . . . . . . . 12  |-  ( ( x  =  <. ( 1st `  x ) ,  ( 2nd `  x
) >.  /\  ( ( 1st `  x )  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  ->  ( 2nd `  x )  e.  NN )
8079ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  ( 2nd `  x )  e.  NN )
81 simprll 738 . . . . . . . . . . 11  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  (
( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1 )
82 simprl 732 . . . . . . . . . . . 12  |-  ( ( y  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >.  /\  ( ( 1st `  y )  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) )  ->  ( 1st `  y )  e.  ZZ )
8382ad2antlr 707 . . . . . . . . . . 11  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  ( 1st `  y )  e.  ZZ )
84 simprr 733 . . . . . . . . . . . 12  |-  ( ( y  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >.  /\  ( ( 1st `  y )  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) )  ->  ( 2nd `  y )  e.  NN )
8584ad2antlr 707 . . . . . . . . . . 11  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  ( 2nd `  y )  e.  NN )
86 simprrl 740 . . . . . . . . . . 11  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  (
( 1st `  y
)  gcd  ( 2nd `  y ) )  =  1 )
87 simprlr 739 . . . . . . . . . . . 12  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  A  =  ( ( 1st `  x )  /  ( 2nd `  x ) ) )
88 simprrr 741 . . . . . . . . . . . 12  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  A  =  ( ( 1st `  y )  /  ( 2nd `  y ) ) )
8987, 88eqtr3d 2317 . . . . . . . . . . 11  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  (
( 1st `  x
)  /  ( 2nd `  x ) )  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) )
90 qredeq 12785 . . . . . . . . . . 11  |-  ( ( ( ( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN  /\  (
( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1 )  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN  /\  (
( 1st `  y
)  gcd  ( 2nd `  y ) )  =  1 )  /\  (
( 1st `  x
)  /  ( 2nd `  x ) )  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) )  ->  ( ( 1st `  x )  =  ( 1st `  y )  /\  ( 2nd `  x
)  =  ( 2nd `  y ) ) )
9178, 80, 81, 83, 85, 86, 89, 90syl331anc 1207 . . . . . . . . . 10  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  =  ( 2nd `  y
) ) )
92 fvex 5539 . . . . . . . . . . 11  |-  ( 1st `  x )  e.  _V
93 fvex 5539 . . . . . . . . . . 11  |-  ( 2nd `  x )  e.  _V
9492, 93opth 4245 . . . . . . . . . 10  |-  ( <.
( 1st `  x
) ,  ( 2nd `  x ) >.  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. 
<->  ( ( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  =  ( 2nd `  y
) ) )
9591, 94sylibr 203 . . . . . . . . 9  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  <. ( 1st `  x ) ,  ( 2nd `  x
) >.  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
96 simplll 734 . . . . . . . . 9  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )
97 simplrl 736 . . . . . . . . 9  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  y  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >. )
9895, 96, 973eqtr4d 2325 . . . . . . . 8  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  x  =  y )
9998ex 423 . . . . . . 7  |-  ( ( ( x  =  <. ( 1st `  x ) ,  ( 2nd `  x
) >.  /\  ( ( 1st `  x )  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  (
y  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >.  /\  ( ( 1st `  y )  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  -> 
( ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) )  ->  x  =  y ) )
10075, 76, 99syl2anb 465 . . . . . 6  |-  ( ( x  e.  ( ZZ 
X.  NN )  /\  y  e.  ( ZZ  X.  NN ) )  -> 
( ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) )  ->  x  =  y ) )
101100rgen2a 2609 . . . . 5  |-  A. x  e.  ( ZZ  X.  NN ) A. y  e.  ( ZZ  X.  NN ) ( ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) )  ->  x  =  y )
10274, 101jctir 524 . . . 4  |-  ( ( z  e.  ZZ  /\  n  e.  NN  /\  A  =  ( z  /  n ) )  -> 
( E. x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  A. x  e.  ( ZZ  X.  NN ) A. y  e.  ( ZZ  X.  NN ) ( ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) )  ->  x  =  y ) ) )
1031023expia 1153 . . 3  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( A  =  ( z  /  n )  ->  ( E. x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  A. x  e.  ( ZZ  X.  NN ) A. y  e.  ( ZZ  X.  NN ) ( ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) )  ->  x  =  y ) ) ) )
104103rexlimivv 2672 . 2  |-  ( E. z  e.  ZZ  E. n  e.  NN  A  =  ( z  /  n )  ->  ( E. x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  A. x  e.  ( ZZ  X.  NN ) A. y  e.  ( ZZ  X.  NN ) ( ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) )  ->  x  =  y ) ) )
105 elq 10318 . 2  |-  ( A  e.  QQ  <->  E. z  e.  ZZ  E. n  e.  NN  A  =  ( z  /  n ) )
106 fveq2 5525 . . . . . 6  |-  ( x  =  y  ->  ( 1st `  x )  =  ( 1st `  y
) )
107 fveq2 5525 . . . . . 6  |-  ( x  =  y  ->  ( 2nd `  x )  =  ( 2nd `  y
) )
108106, 107oveq12d 5876 . . . . 5  |-  ( x  =  y  ->  (
( 1st `  x
)  gcd  ( 2nd `  x ) )  =  ( ( 1st `  y
)  gcd  ( 2nd `  y ) ) )
109108eqeq1d 2291 . . . 4  |-  ( x  =  y  ->  (
( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  <->  ( ( 1st `  y )  gcd  ( 2nd `  y ) )  =  1 ) )
110106, 107oveq12d 5876 . . . . 5  |-  ( x  =  y  ->  (
( 1st `  x
)  /  ( 2nd `  x ) )  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) )
111110eqeq2d 2294 . . . 4  |-  ( x  =  y  ->  ( A  =  ( ( 1st `  x )  / 
( 2nd `  x
) )  <->  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) )
112109, 111anbi12d 691 . . 3  |-  ( x  =  y  ->  (
( ( ( 1st `  x )  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x )  /  ( 2nd `  x ) ) )  <->  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )
113112reu4 2959 . 2  |-  ( E! x  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  <-> 
( E. x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  A. x  e.  ( ZZ  X.  NN ) A. y  e.  ( ZZ  X.  NN ) ( ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) )  ->  x  =  y ) ) )
114104, 105, 1133imtr4i 257 1  |-  ( A  e.  QQ  ->  E! x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   E!wreu 2545   <.cop 3643   class class class wbr 4023    X. cxp 4687   ` cfv 5255  (class class class)co 5858   1stc1st 6120   2ndc2nd 6121   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    x. cmul 8742    < clt 8867    / cdiv 9423   NNcn 9746   NN0cn0 9965   ZZcz 10024   QQcq 10316    || cdivides 12531    gcd cgcd 12685
This theorem is referenced by:  qnumdencl  12810  qnumdenbi  12815  qredeuOLD  26241
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-dvds 12532  df-gcd 12686
  Copyright terms: Public domain W3C validator