MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qredeu Unicode version

Theorem qredeu 12802
Description: Every rational number has a unique reduced form. (Contributed by Jeff Hankins, 29-Sep-2013.)
Assertion
Ref Expression
qredeu  |-  ( A  e.  QQ  ->  E! x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) )
Distinct variable group:    x, A

Proof of Theorem qredeu
Dummy variables  n  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnz 10061 . . . . . . . . . 10  |-  ( n  e.  NN  ->  n  e.  ZZ )
2 gcddvds 12710 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( z  gcd  n )  ||  z  /\  ( z  gcd  n
)  ||  n )
)
32simpld 445 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  n  e.  ZZ )  ->  ( z  gcd  n
)  ||  z )
41, 3sylan2 460 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( z  gcd  n
)  ||  z )
5 gcdcl 12712 . . . . . . . . . . . 12  |-  ( ( z  e.  ZZ  /\  n  e.  ZZ )  ->  ( z  gcd  n
)  e.  NN0 )
61, 5sylan2 460 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( z  gcd  n
)  e.  NN0 )
76nn0zd 10131 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( z  gcd  n
)  e.  ZZ )
8 simpl 443 . . . . . . . . . . . 12  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  z  e.  ZZ )
91adantl 452 . . . . . . . . . . . 12  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  n  e.  ZZ )
10 nnne0 9794 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  n  =/=  0 )
1110neneqd 2475 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  -.  n  =  0 )
1211intnand 882 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  -.  ( z  =  0  /\  n  =  0 ) )
1312adantl 452 . . . . . . . . . . . 12  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  -.  ( z  =  0  /\  n  =  0 ) )
14 gcdn0cl 12709 . . . . . . . . . . . 12  |-  ( ( ( z  e.  ZZ  /\  n  e.  ZZ )  /\  -.  ( z  =  0  /\  n  =  0 ) )  ->  ( z  gcd  n )  e.  NN )
158, 9, 13, 14syl21anc 1181 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( z  gcd  n
)  e.  NN )
16 nnne0 9794 . . . . . . . . . . 11  |-  ( ( z  gcd  n )  e.  NN  ->  (
z  gcd  n )  =/=  0 )
1715, 16syl 15 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( z  gcd  n
)  =/=  0 )
18 dvdsval2 12550 . . . . . . . . . 10  |-  ( ( ( z  gcd  n
)  e.  ZZ  /\  ( z  gcd  n
)  =/=  0  /\  z  e.  ZZ )  ->  ( ( z  gcd  n )  ||  z 
<->  ( z  /  (
z  gcd  n )
)  e.  ZZ ) )
197, 17, 8, 18syl3anc 1182 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  gcd  n )  ||  z  <->  ( z  /  ( z  gcd  n ) )  e.  ZZ ) )
204, 19mpbid 201 . . . . . . . 8  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( z  /  (
z  gcd  n )
)  e.  ZZ )
21203adant3 975 . . . . . . 7  |-  ( ( z  e.  ZZ  /\  n  e.  NN  /\  A  =  ( z  /  n ) )  -> 
( z  /  (
z  gcd  n )
)  e.  ZZ )
222simprd 449 . . . . . . . . . . . 12  |-  ( ( z  e.  ZZ  /\  n  e.  ZZ )  ->  ( z  gcd  n
)  ||  n )
231, 22sylan2 460 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( z  gcd  n
)  ||  n )
24 dvdsval2 12550 . . . . . . . . . . . 12  |-  ( ( ( z  gcd  n
)  e.  ZZ  /\  ( z  gcd  n
)  =/=  0  /\  n  e.  ZZ )  ->  ( ( z  gcd  n )  ||  n 
<->  ( n  /  (
z  gcd  n )
)  e.  ZZ ) )
257, 17, 9, 24syl3anc 1182 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  gcd  n )  ||  n  <->  ( n  /  ( z  gcd  n ) )  e.  ZZ ) )
2623, 25mpbid 201 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( n  /  (
z  gcd  n )
)  e.  ZZ )
27 nnre 9769 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  n  e.  RR )
2827adantl 452 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  n  e.  RR )
296nn0red 10035 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( z  gcd  n
)  e.  RR )
30 nngt0 9791 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  0  <  n )
3130adantl 452 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  0  <  n )
32 nngt0 9791 . . . . . . . . . . . 12  |-  ( ( z  gcd  n )  e.  NN  ->  0  <  ( z  gcd  n
) )
3315, 32syl 15 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  0  <  ( z  gcd  n ) )
3428, 29, 31, 33divgt0d 9708 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  0  <  ( n  /  ( z  gcd  n ) ) )
3526, 34jca 518 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( n  / 
( z  gcd  n
) )  e.  ZZ  /\  0  <  ( n  /  ( z  gcd  n ) ) ) )
36353adant3 975 . . . . . . . 8  |-  ( ( z  e.  ZZ  /\  n  e.  NN  /\  A  =  ( z  /  n ) )  -> 
( ( n  / 
( z  gcd  n
) )  e.  ZZ  /\  0  <  ( n  /  ( z  gcd  n ) ) ) )
37 elnnz 10050 . . . . . . . 8  |-  ( ( n  /  ( z  gcd  n ) )  e.  NN  <->  ( (
n  /  ( z  gcd  n ) )  e.  ZZ  /\  0  <  ( n  /  (
z  gcd  n )
) ) )
3836, 37sylibr 203 . . . . . . 7  |-  ( ( z  e.  ZZ  /\  n  e.  NN  /\  A  =  ( z  /  n ) )  -> 
( n  /  (
z  gcd  n )
)  e.  NN )
39 opelxpi 4737 . . . . . . 7  |-  ( ( ( z  /  (
z  gcd  n )
)  e.  ZZ  /\  ( n  /  (
z  gcd  n )
)  e.  NN )  ->  <. ( z  / 
( z  gcd  n
) ) ,  ( n  /  ( z  gcd  n ) )
>.  e.  ( ZZ  X.  NN ) )
4021, 38, 39syl2anc 642 . . . . . 6  |-  ( ( z  e.  ZZ  /\  n  e.  NN  /\  A  =  ( z  /  n ) )  ->  <. ( z  /  (
z  gcd  n )
) ,  ( n  /  ( z  gcd  n ) ) >.  e.  ( ZZ  X.  NN ) )
416nn0cnd 10036 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( z  gcd  n
)  e.  CC )
4241mulid1d 8868 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  gcd  n )  x.  1 )  =  ( z  gcd  n ) )
43 zcn 10045 . . . . . . . . . . . 12  |-  ( z  e.  ZZ  ->  z  e.  CC )
4443adantr 451 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  z  e.  CC )
4544, 41, 17divcan2d 9554 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  gcd  n )  x.  (
z  /  ( z  gcd  n ) ) )  =  z )
46 nncn 9770 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  n  e.  CC )
4746adantl 452 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  n  e.  CC )
4847, 41, 17divcan2d 9554 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  gcd  n )  x.  (
n  /  ( z  gcd  n ) ) )  =  n )
4945, 48oveq12d 5892 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( ( z  gcd  n )  x.  ( z  /  (
z  gcd  n )
) )  gcd  (
( z  gcd  n
)  x.  ( n  /  ( z  gcd  n ) ) ) )  =  ( z  gcd  n ) )
50 mulgcd 12741 . . . . . . . . . 10  |-  ( ( ( z  gcd  n
)  e.  NN0  /\  ( z  /  (
z  gcd  n )
)  e.  ZZ  /\  ( n  /  (
z  gcd  n )
)  e.  ZZ )  ->  ( ( ( z  gcd  n )  x.  ( z  / 
( z  gcd  n
) ) )  gcd  ( ( z  gcd  n )  x.  (
n  /  ( z  gcd  n ) ) ) )  =  ( ( z  gcd  n
)  x.  ( ( z  /  ( z  gcd  n ) )  gcd  ( n  / 
( z  gcd  n
) ) ) ) )
516, 20, 26, 50syl3anc 1182 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( ( z  gcd  n )  x.  ( z  /  (
z  gcd  n )
) )  gcd  (
( z  gcd  n
)  x.  ( n  /  ( z  gcd  n ) ) ) )  =  ( ( z  gcd  n )  x.  ( ( z  /  ( z  gcd  n ) )  gcd  ( n  /  (
z  gcd  n )
) ) ) )
5242, 49, 513eqtr2rd 2335 . . . . . . . 8  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  gcd  n )  x.  (
( z  /  (
z  gcd  n )
)  gcd  ( n  /  ( z  gcd  n ) ) ) )  =  ( ( z  gcd  n )  x.  1 ) )
5320, 26gcdcld 12713 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  / 
( z  gcd  n
) )  gcd  (
n  /  ( z  gcd  n ) ) )  e.  NN0 )
5453nn0cnd 10036 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  / 
( z  gcd  n
) )  gcd  (
n  /  ( z  gcd  n ) ) )  e.  CC )
55 ax-1cn 8811 . . . . . . . . . 10  |-  1  e.  CC
5655a1i 10 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  1  e.  CC )
5754, 56, 41, 17mulcand 9417 . . . . . . . 8  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( ( z  gcd  n )  x.  ( ( z  / 
( z  gcd  n
) )  gcd  (
n  /  ( z  gcd  n ) ) ) )  =  ( ( z  gcd  n
)  x.  1 )  <-> 
( ( z  / 
( z  gcd  n
) )  gcd  (
n  /  ( z  gcd  n ) ) )  =  1 ) )
5852, 57mpbid 201 . . . . . . 7  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  / 
( z  gcd  n
) )  gcd  (
n  /  ( z  gcd  n ) ) )  =  1 )
59583adant3 975 . . . . . 6  |-  ( ( z  e.  ZZ  /\  n  e.  NN  /\  A  =  ( z  /  n ) )  -> 
( ( z  / 
( z  gcd  n
) )  gcd  (
n  /  ( z  gcd  n ) ) )  =  1 )
6010adantl 452 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  n  =/=  0 )
6144, 47, 41, 60, 17divcan7d 9580 . . . . . . . 8  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  / 
( z  gcd  n
) )  /  (
n  /  ( z  gcd  n ) ) )  =  ( z  /  n ) )
6261eqeq2d 2307 . . . . . . 7  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( A  =  ( ( z  /  (
z  gcd  n )
)  /  ( n  /  ( z  gcd  n ) ) )  <-> 
A  =  ( z  /  n ) ) )
6362biimp3ar 1282 . . . . . 6  |-  ( ( z  e.  ZZ  /\  n  e.  NN  /\  A  =  ( z  /  n ) )  ->  A  =  ( (
z  /  ( z  gcd  n ) )  /  ( n  / 
( z  gcd  n
) ) ) )
64 ovex 5899 . . . . . . . . . . 11  |-  ( z  /  ( z  gcd  n ) )  e. 
_V
65 ovex 5899 . . . . . . . . . . 11  |-  ( n  /  ( z  gcd  n ) )  e. 
_V
6664, 65op1std 6146 . . . . . . . . . 10  |-  ( x  =  <. ( z  / 
( z  gcd  n
) ) ,  ( n  /  ( z  gcd  n ) )
>.  ->  ( 1st `  x
)  =  ( z  /  ( z  gcd  n ) ) )
6764, 65op2ndd 6147 . . . . . . . . . 10  |-  ( x  =  <. ( z  / 
( z  gcd  n
) ) ,  ( n  /  ( z  gcd  n ) )
>.  ->  ( 2nd `  x
)  =  ( n  /  ( z  gcd  n ) ) )
6866, 67oveq12d 5892 . . . . . . . . 9  |-  ( x  =  <. ( z  / 
( z  gcd  n
) ) ,  ( n  /  ( z  gcd  n ) )
>.  ->  ( ( 1st `  x )  gcd  ( 2nd `  x ) )  =  ( ( z  /  ( z  gcd  n ) )  gcd  ( n  /  (
z  gcd  n )
) ) )
6968eqeq1d 2304 . . . . . . . 8  |-  ( x  =  <. ( z  / 
( z  gcd  n
) ) ,  ( n  /  ( z  gcd  n ) )
>.  ->  ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  <-> 
( ( z  / 
( z  gcd  n
) )  gcd  (
n  /  ( z  gcd  n ) ) )  =  1 ) )
7066, 67oveq12d 5892 . . . . . . . . 9  |-  ( x  =  <. ( z  / 
( z  gcd  n
) ) ,  ( n  /  ( z  gcd  n ) )
>.  ->  ( ( 1st `  x )  /  ( 2nd `  x ) )  =  ( ( z  /  ( z  gcd  n ) )  / 
( n  /  (
z  gcd  n )
) ) )
7170eqeq2d 2307 . . . . . . . 8  |-  ( x  =  <. ( z  / 
( z  gcd  n
) ) ,  ( n  /  ( z  gcd  n ) )
>.  ->  ( A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) )  <->  A  =  ( ( z  / 
( z  gcd  n
) )  /  (
n  /  ( z  gcd  n ) ) ) ) )
7269, 71anbi12d 691 . . . . . . 7  |-  ( x  =  <. ( z  / 
( z  gcd  n
) ) ,  ( n  /  ( z  gcd  n ) )
>.  ->  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  <-> 
( ( ( z  /  ( z  gcd  n ) )  gcd  ( n  /  (
z  gcd  n )
) )  =  1  /\  A  =  ( ( z  /  (
z  gcd  n )
)  /  ( n  /  ( z  gcd  n ) ) ) ) ) )
7372rspcev 2897 . . . . . 6  |-  ( (
<. ( z  /  (
z  gcd  n )
) ,  ( n  /  ( z  gcd  n ) ) >.  e.  ( ZZ  X.  NN )  /\  ( ( ( z  /  ( z  gcd  n ) )  gcd  ( n  / 
( z  gcd  n
) ) )  =  1  /\  A  =  ( ( z  / 
( z  gcd  n
) )  /  (
n  /  ( z  gcd  n ) ) ) ) )  ->  E. x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) )
7440, 59, 63, 73syl12anc 1180 . . . . 5  |-  ( ( z  e.  ZZ  /\  n  e.  NN  /\  A  =  ( z  /  n ) )  ->  E. x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) )
75 elxp6 6167 . . . . . . 7  |-  ( x  e.  ( ZZ  X.  NN )  <->  ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) ) )
76 elxp6 6167 . . . . . . 7  |-  ( y  e.  ( ZZ  X.  NN )  <->  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )
77 simprl 732 . . . . . . . . . . . 12  |-  ( ( x  =  <. ( 1st `  x ) ,  ( 2nd `  x
) >.  /\  ( ( 1st `  x )  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  ->  ( 1st `  x )  e.  ZZ )
7877ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  ( 1st `  x )  e.  ZZ )
79 simprr 733 . . . . . . . . . . . 12  |-  ( ( x  =  <. ( 1st `  x ) ,  ( 2nd `  x
) >.  /\  ( ( 1st `  x )  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  ->  ( 2nd `  x )  e.  NN )
8079ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  ( 2nd `  x )  e.  NN )
81 simprll 738 . . . . . . . . . . 11  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  (
( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1 )
82 simprl 732 . . . . . . . . . . . 12  |-  ( ( y  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >.  /\  ( ( 1st `  y )  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) )  ->  ( 1st `  y )  e.  ZZ )
8382ad2antlr 707 . . . . . . . . . . 11  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  ( 1st `  y )  e.  ZZ )
84 simprr 733 . . . . . . . . . . . 12  |-  ( ( y  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >.  /\  ( ( 1st `  y )  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) )  ->  ( 2nd `  y )  e.  NN )
8584ad2antlr 707 . . . . . . . . . . 11  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  ( 2nd `  y )  e.  NN )
86 simprrl 740 . . . . . . . . . . 11  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  (
( 1st `  y
)  gcd  ( 2nd `  y ) )  =  1 )
87 simprlr 739 . . . . . . . . . . . 12  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  A  =  ( ( 1st `  x )  /  ( 2nd `  x ) ) )
88 simprrr 741 . . . . . . . . . . . 12  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  A  =  ( ( 1st `  y )  /  ( 2nd `  y ) ) )
8987, 88eqtr3d 2330 . . . . . . . . . . 11  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  (
( 1st `  x
)  /  ( 2nd `  x ) )  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) )
90 qredeq 12801 . . . . . . . . . . 11  |-  ( ( ( ( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN  /\  (
( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1 )  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN  /\  (
( 1st `  y
)  gcd  ( 2nd `  y ) )  =  1 )  /\  (
( 1st `  x
)  /  ( 2nd `  x ) )  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) )  ->  ( ( 1st `  x )  =  ( 1st `  y )  /\  ( 2nd `  x
)  =  ( 2nd `  y ) ) )
9178, 80, 81, 83, 85, 86, 89, 90syl331anc 1207 . . . . . . . . . 10  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  =  ( 2nd `  y
) ) )
92 fvex 5555 . . . . . . . . . . 11  |-  ( 1st `  x )  e.  _V
93 fvex 5555 . . . . . . . . . . 11  |-  ( 2nd `  x )  e.  _V
9492, 93opth 4261 . . . . . . . . . 10  |-  ( <.
( 1st `  x
) ,  ( 2nd `  x ) >.  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. 
<->  ( ( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  =  ( 2nd `  y
) ) )
9591, 94sylibr 203 . . . . . . . . 9  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  <. ( 1st `  x ) ,  ( 2nd `  x
) >.  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
96 simplll 734 . . . . . . . . 9  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )
97 simplrl 736 . . . . . . . . 9  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  y  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >. )
9895, 96, 973eqtr4d 2338 . . . . . . . 8  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  x  =  y )
9998ex 423 . . . . . . 7  |-  ( ( ( x  =  <. ( 1st `  x ) ,  ( 2nd `  x
) >.  /\  ( ( 1st `  x )  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  (
y  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >.  /\  ( ( 1st `  y )  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  -> 
( ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) )  ->  x  =  y ) )
10075, 76, 99syl2anb 465 . . . . . 6  |-  ( ( x  e.  ( ZZ 
X.  NN )  /\  y  e.  ( ZZ  X.  NN ) )  -> 
( ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) )  ->  x  =  y ) )
101100rgen2a 2622 . . . . 5  |-  A. x  e.  ( ZZ  X.  NN ) A. y  e.  ( ZZ  X.  NN ) ( ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) )  ->  x  =  y )
10274, 101jctir 524 . . . 4  |-  ( ( z  e.  ZZ  /\  n  e.  NN  /\  A  =  ( z  /  n ) )  -> 
( E. x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  A. x  e.  ( ZZ  X.  NN ) A. y  e.  ( ZZ  X.  NN ) ( ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) )  ->  x  =  y ) ) )
1031023expia 1153 . . 3  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( A  =  ( z  /  n )  ->  ( E. x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  A. x  e.  ( ZZ  X.  NN ) A. y  e.  ( ZZ  X.  NN ) ( ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) )  ->  x  =  y ) ) ) )
104103rexlimivv 2685 . 2  |-  ( E. z  e.  ZZ  E. n  e.  NN  A  =  ( z  /  n )  ->  ( E. x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  A. x  e.  ( ZZ  X.  NN ) A. y  e.  ( ZZ  X.  NN ) ( ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) )  ->  x  =  y ) ) )
105 elq 10334 . 2  |-  ( A  e.  QQ  <->  E. z  e.  ZZ  E. n  e.  NN  A  =  ( z  /  n ) )
106 fveq2 5541 . . . . . 6  |-  ( x  =  y  ->  ( 1st `  x )  =  ( 1st `  y
) )
107 fveq2 5541 . . . . . 6  |-  ( x  =  y  ->  ( 2nd `  x )  =  ( 2nd `  y
) )
108106, 107oveq12d 5892 . . . . 5  |-  ( x  =  y  ->  (
( 1st `  x
)  gcd  ( 2nd `  x ) )  =  ( ( 1st `  y
)  gcd  ( 2nd `  y ) ) )
109108eqeq1d 2304 . . . 4  |-  ( x  =  y  ->  (
( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  <->  ( ( 1st `  y )  gcd  ( 2nd `  y ) )  =  1 ) )
110106, 107oveq12d 5892 . . . . 5  |-  ( x  =  y  ->  (
( 1st `  x
)  /  ( 2nd `  x ) )  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) )
111110eqeq2d 2307 . . . 4  |-  ( x  =  y  ->  ( A  =  ( ( 1st `  x )  / 
( 2nd `  x
) )  <->  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) )
112109, 111anbi12d 691 . . 3  |-  ( x  =  y  ->  (
( ( ( 1st `  x )  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x )  /  ( 2nd `  x ) ) )  <->  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )
113112reu4 2972 . 2  |-  ( E! x  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  <-> 
( E. x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  A. x  e.  ( ZZ  X.  NN ) A. y  e.  ( ZZ  X.  NN ) ( ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) )  ->  x  =  y ) ) )
114104, 105, 1133imtr4i 257 1  |-  ( A  e.  QQ  ->  E! x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   E!wreu 2558   <.cop 3656   class class class wbr 4039    X. cxp 4703   ` cfv 5271  (class class class)co 5874   1stc1st 6136   2ndc2nd 6137   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    x. cmul 8758    < clt 8883    / cdiv 9439   NNcn 9762   NN0cn0 9981   ZZcz 10040   QQcq 10332    || cdivides 12547    gcd cgcd 12701
This theorem is referenced by:  qnumdencl  12826  qnumdenbi  12831  qredeuOLD  26344
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-dvds 12548  df-gcd 12702
  Copyright terms: Public domain W3C validator